Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MICP
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Aim of this study was assessing the characteristics of dispersive soil based on percentage of dispersion and degree of dispersion and to improve the strength of soil using microbes. This research has utilized the Microbial Induced Calcium Carbonate process (MICP) in conjunction with jute fibre for the improvement the erosive resistance in dispersive soil. Calcite formation occurred as a consequence of microbial biomass in voids of dispersive soil. Calcium carbonate was synthesized in the gaps of the soil matrix during the microbiological process. Bacillus sphaericus bacteria were used in this experiment, along with a 1 cm length of jute raw fibre of 1 cm long and a cell concentration of 6.4E+08 CFU mL-1. The findings of the Unconfined compressive strength (UCS) test showed following of MICP treatment with and without jute fibre augmentation, UCS values causing the 11 and 13 times. Crumb test findings showed no colloidal solution was generated after microbial treatment, which was used for confirmation of the degree of dispersiveness reduction. Addition of jute fibres indicating better precipitation values of more than 4% due to the internal bonding strength. Ground renovation through microbial cementation yielded promising benefits, suggesting sustainability.
EN
Nowadays, geotechnical specialists are focused on reinforcing soil engineering parameters using innovative and environmentally friendly methods. Microbial-Induced Calcite Precipitation is a ground improvement method for modifying soil strength, permeability, and stiffness; therefore, it can be vital to study the effective factors on the technique’s efficiency and cost reduction. This study examined how biologically treated sands subjected to undrained triaxial loading responded to simultaneous changes in cementation solution molarity, optical density (OD600), and curing time. The triaxial experiments showed that the strength increased with the rise in the mentioned parameters. While the solution molarity and optical density had the highest and lowest effect on the soil improvement process, respectively, the optical density role was considerably low when the molarity was high. Increasing the molarity of the cementation solution resulted in a 45% increase in the peak stress ratio, while the optical density and curing time were constant. On the other hand, similar behaviour of dense sand and change in the response of cemented soil from strain-hardening to strain-softening were other notable observations of this study. In addition, the peak stress ratio at low strains increased with increasing the cementation level and then decreased to close to the amount of untreated sand with increasing strain.
3
EN
The aim of this study is to present the effect of treatment with ureolytic bacteria (Sporosarcina pasteurii) on the compressibility parameters of mineral and anthropogenic soils. In the presence of the urease enzyme, secreted by a strain of Sporosarcina pasteurii bacteria, urea hydrolysis occurs, allowing CaCO3 to be precipitated. The literature suggests applying the Microbially Induced Calcite Precipitation (MICP) method to non-cohesive soils. In order to determine whether the biomineralization process occurs in other soil types, cohesive and anthropogenic soils were tested in the laboratory. Compressibility tests were carried out in the laboratory on MICP-treated and untreated soils as reference samples. The process of biocementation in the soil is made possible by the introduction of bacteria into the soil and subsequent activation by a cementation solution (consisting of urea and calcium ions Ca2+). This paper presents the methodology for introducing bacteria into the soil, as well as the effect of the biomineralization process on the deformation parameters of the tested materials.
EN
Unsaturated soil properties such as soil–water characteristic curve (SWCC) and shear strength are required for seepage and stability flow analyses in various geo-engineering infrastructures. Microbial-induced calcite precipitation (MICP) has been recently adopted for enhancing strength of soils however, with rare focus on improvement in unsaturated soil properties of granitic residual soil. It is known that granite residual soil exhibits unique disintegration properties upon interaction with water. The objective of this study is to investigate the unsaturated properties under different vertical stresses (0, 100, 200 and 300 kPa) for MICP treated granitic residual soils. Further, microstructural characterization of MICP treated soil was conducted to analyse its water retention and shear strength, so as to provide theoretical basis for engineering application of MICP in strengthening granite residual soil. Pressure plate apparatus and FDJ-20 quadruple shear strength apparatus were utilized to obtain SWCCs and shear strength, respectively. Based on the result, it can be concluded that the treatment by MICP is found to enhance the air entry value of granitic residual soil. In addition, MICP treated soils possess higher water content than untreated soil at near-saturated condition. This is due to calcite precipitation on surface of grains and carbonate formation at contact points, which in turn reduces void ratio. However, the difference in water retention reduces with an increase in suction and also confining stress. It is possibly due to breakage of carbonate bonds at contact points at higher stresses. After five times grouting, the effective cohesion, internal friction angle and matric suction angle is found to increase very significantly.
PL
W artykule przedstawiono zastosowanie mikrobiologicznego wytrącania kalcytu jako alternatywnej metody wzmacniania powierzchniowego kompozytów cementowych. Opisano procedury wytrącania kalcytu (ang. microbiologically induced calcium carbonate precipitation, MICP) oraz przedstawiono wyniki pilotażowych badań laboratoryjnych zastosowania tej metody. Wykazano duży potencjał zastosowania mikrobiologicznego wytrącania kalcytu w budownictwie, co w porównaniu z metodami tradycyjnymi jest procesem ekologicznie przyjaznym oraz energooszczędnym. Uzyskane wyniki wskazują, że zastosowanie wytrącania kalcytu prowadzi do wyraźnej poprawy właściwości badanych próbek i ich uszczelnienia. Planowane jest kontynuowanie i rozszerzenie badań, sprawdzające inne procedury zastosowania MICP.
EN
In this article, an application of MICP is examined, as an alternative method of surface strengthening in cement composites. Several MICP procedures and results out of some reference lab testing are shown in this paper. The high potential of MICP building application is shown based on the obtained results - the surface strengthening and sealing are improved. Additionally, the examined method is more ecologically friendly and energy-efficient compared with the standard procedures of surface strengthening. It is planned to continue research on MICP application in concrete elements.
PL
Celem pracy było scharakteryzowanie przestrzeni porowej łupków menilitowych występujących w odsłonięciach powierzchniowych z rejonu Birczy w jednostce skolskiej. Wszystkie próbki zostały pobrane z całego profilu stratygraficznego w jednym odsłonięciu w Birczy o długości 1 m. Struktura porowa próbek łupków wygrzanych w 105°C była mierzona metodą porozymetrii rtęciowej (ang. mercury injection capillary pressure, MICP) w temperaturze otoczenia oraz metodą adsorpcji azotu w temperaturze wrzenia ciekłego azotu. Ze względu na deformację przestrzeni porowej pod wpływem wysokich ciśnień roboczych rtęci, z krokami ciśnienia od 0 do 4136,84 bara, mikropory i mezopory można błędnie interpretować. Jako metodę uzupełniającą zastosowano więc pomiar adsorpcji azotu w celu prawidłowego obliczenia całkowitej połączonej objętości porowej. Na wykresach dV/dD (pochodnych objętości względem średnicy) połączono wyniki z obu technik pomiarowych, uzyskując pełniejszy obraz rozkładu objętości porów. W pracy przedstawiono możliwość dokładniejszego obliczenia objętości porów na podstawie nowego podejścia do analizy wykresów pochodnych. Obie metody zapewniają również kompleksową ocenę parametrów struktury porów, w tym powierzchni właściwej (ang. specific surface area, SSA), objętości mikroi mezoporów oraz rozszerzonego zakresu rozkładu wielkości porów (ang. pore size distribution, PSD). Porównując wyniki metody adsorpcyjnej z użyciem azotu z wynikami porozymetrii rtęciowej, należy pamiętać o różnicach w zakresach obu technik badawczych oraz o tym, że azot i rtęć rejestrują struktury porowe w znacząco odmienny sposób. Zatłaczanie rtęci do struktury porowej jest regulowane przez przewężenia porów, podczas gdy zjawisko adsorpcji jest kontrolowane przez powierzchnię porów. Zastosowanie porozymetrii rtęciowej i adsorpcji azotu do łupków menilitowych pokazuje, jak użycie tych dwóch metod może wpłynąć na uzyskanie wzajemnie uzupełniających się informacji, które weryfikują obliczenia objętości porowej głównej skały macierzystej dla karpackich rop naftowych.
EN
The aim of this paper is to characterize pore space of superficial Menilite Shales from Bircza area within the Skole Unit. All specimens were sampled from single outcrop in Bircza at the distance of 1 m in the whole stratigraphic profile. Pore structure of shale samples preheated at temperature of 105°C was measured by both mercury injection capillary pressure (MICP) at ambient temperature and nitrogen adsorption at liquid nitrogen boiling point. Considering deformation of pore space under high mercury working pressures with pressure steps from 0 to 4136.84 bar, misinterpretation of micropores and mesopores is possible. Therefore, the nitrogen adsorption was used as a supplementary method in order to properly compute the total pore volume. In the dV/dD graphs (diameter derivative of a volume) the results from both measuring techniques were combined, thus obtaining more complete picture of pore volume distribution. The paper presents potential for more precise pore volume computation based on the analyses of their derivative graphs. Both methods provide also complex assessment of pore structure parameters, including specific surface area (SSA), volumes of micro- and mesopores and the extended range of pore size distribution (PSD). When comparing the results of the nitrogen adsorption method with those of the mercury injection method, it is necessary to keep in mind that there are different operating ranges of both methods as the nitrogen and mercury report the pore structures in a very different ways. Forced penetration of mercury into the pore structure is controlled by pore bottlenecks, while the process of adsorption is controlled by the pore surface area. The application of both mercury injection and nitrogen adsorption for Menilite Shales shows how the use of these two methods can provide complementary information that verifies pore volume calculations of the Carpathian petroleum main source rock.
EN
One of the most important tasks in the characterization of unconventional tight-gas sandstone reservoirs is a proper evaluation of rock types (RT). Rock typing based on pore structure has a great potential to capture fluctuations in storage potential, and fluid transport within the formations studied. This study presents a newly adapted workflow to formulate rock types in tight-gas sandstone reservoirs based on similarities in pore structure. Rock types are identified using the k-means clustering method (unsupervised learning) on pore structure parameters derived from measuring mercury injection capillary pressure (MICP). The parameters associate opened porosity, proportions of macro-, meso-, micro-, and nanopores, and selected MICP-derived permeability. The correlation between pulse decay permeability and permeabilities calculated from MICP analysis revealed that Swanson permeability is the most useful permeability estimation for rock typing. The cluster analysis performed on 178 samples revealed four rock types (RT1–RT4) of unique pore system characteristics that significantly differ in macro-, meso-, micro-, and nanopore content. The clusters’ tendency was evaluated using the Hopkins statistic. The optimal number of clusters was determined using the Elbow method as an internal validation technique. Rock types 1 and 2 (RT1 and RT2) showed a highly tight character with a Swanson permeability of < 0.1 mD and an opened porosity of < 5%. Samples from RT3 and RT4 revealed more conventional characteristics with a Swanson permeability of > 0.1 mD and an opened porosity of > 5%. The variability in the pore structure between designated rock types was also captured using Computerized Analysis of Microscopic Images (CAMI) on the thin-sections from the most representative samples of the individual rock types. Pore structure characteristics (opened porosity and pore-throat distribution) with Swanson permeability and rock types were integrated into an array log to locate the most perspective intervals within the formation under study.
PL
Jednym z kluczowych zadań w charakterystyce niekonwencjonalnych piaskowców typu tight gas jest prawidłowe wyznaczenie klas podobieństw, tzw. rock types. Rock typing oparty na charakterystyce systemu porów posiada duży potencjał wyznaczania stref o pożądanych własnościach zbiornikowych i filtracyjnych w badanej formacji. Praca pokazuje metodologię wyznaczania klas podobieństw na podstawie charakterystyki systemu porów w formacjach zwięzłych piaskowców. Klasy podobieństw zostały wyznaczone za pomocą metody k-średnich w oparciu o wyselekcjonowane parametry przestrzeni porowej: porowatość otwartą, frakcje makro-, mezo-, mikroi nanoporów oraz przepuszczalność Swansona. Wszystkie parametry zostały wyznaczone na podstawie danych MICP. Korelacja pomiędzy przepuszczalnością otrzymaną metodą pulse decay i przepuszczalnościami wyliczonymi z MICP pokazała, że najbardziej wiarygodną metodą szacowania przepuszczalności do rock typingu jest metoda Swansona. Analiza klastrowa przeprowadzona na 178 próbkach pozwoliła na wyznaczenie 4 typów skał (rock types RT1–RT4) cechujących się odmienną charakterystyką systemu porów, w której dominowały makro-, mezo-, mikro- lub nanopory. Tendencja do tworzenia klastrów została oceniona za pomocą metody/statystyki Hopkinsa. Optymalna liczba klastrów została wyznaczona przy użyciu wewnętrznych metod walidacyjnych (metoda „elbow”). Próbki należące do typów 1 i 2 (RT1 i RT2) charakteryzują się silnie zwięzłym charakterem z przepuszczalnością Swansona < 0,1 mD i porowatością otwartą < 5%. Próbki z klas 3 i 4 (RT3 i RT4) posiadają bardziej konwencjonalny charakter z przepuszczalnością Swansona > 0,1 mD i porowatością otwartą > 5%. Zmienność pomiędzy wyznaczonymi klasami została również zaobserwowana w wynikach analizy obrazu mikroskopowego (CAMI), która została wykonana na płytkach cienkich dla najbardziej reprezentatywnych próbek z poszczególnych klas. Zintegrowanie otrzymanych wyników dotyczących struktury porowej (porowatość otwarta, rozkład porów), przepuszczalności Swansona oraz klas podobieństw zostało wykorzystane do wskazania stref o najlepszych własnościach zbiornikowych i filtracyjnych w badanej formacji.
PL
Celem artykułu jest przedstawienie mikrobiologicznego procesu otrzymywania osadu wapnia (MICP, z ang. Microbially Induced Calcite Precipitation). Podstawą technologii MICP jest aktywność komórek bakterii, które są w stanie zmagazynować produkt metaboliczny CO32-, który następnie reaguje z jonami wapnia w środowisku naturalnym, w wyniku czego uzyskiwana jest struktura minerału. Bakterie ureolityczne, prowadzące proces hydrolizy mocznika przy udziale enzymu ureazy, okazały się najefektywniejsze przy tworzeniu osadu węglanu wapnia, a tym samym najbardziej odpowiednie do celów biocementacji gruntów. Artykuł przedstawia przegląd metod hodowli bakterii oraz prac eksperymentalnych mających na celu osiągnięcie najlepszych parametrów badanego materiału.
EN
The aim of the paper is to present and describe the use of microbially induced calcite precipitation process (MICP). The basis of MICP process is bacterial metabolic activity which thereby promotes the precipitation of calcium carbonate in the form of calcite. Ureolytic bacteria that hydrolyze urea, proved to be the most effective to perform precipitation of calcium carbonate. Therefore their application seems to be beneficial in the processes biocementation of soils. The paper presents the methods of obtaining the urease active bacteria and describes laboratory methods in order to achieve the best strength parameters of tested soil.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.