An active vibration control system is proposed for suppressing the small amplitude plate vibration. The structure under study is a vibrating trapezoidal plate, having a constant thickness, to which MFC (Micro Fiber Composite) actuator is bonded. It was assumed, that the plate clamped at one edge is excited by a uniform periodic force generated by a loudspeaker. The control problem lies in using MFC actuator to reduce the plate vibrations. For the system under consideration the mathematical model obtained on the base of parametric identification method is constructed. This part of the research was done with the help of Polytec laser vibrometer. The apparatus is highly advanced tool that allows measurement of vibration of examined structure. With transfer function model obtained in identification process, using Matlabs Identification Toolbox, feedback control laws was created for changing response of the system in desired way. There are many ways to model controller having mathematical model of the object. In this article, authors propose approach to design an effective controller for vibration suppression of a trapezoidal plate with the use of the pole placement method in graphical SISOTool environment. This article describes concept, results of simulation tests and implementation for the designed controller.
In this paper, the MFC sensor and actuators are applied to suppress circular plate vibrations. It is assumed that the system to be regulated is unknown. The mathematical model of the plate was obtained on the base of registration of a system response on a fixed excitation. For the estimation of the system’s behaviour the ARX identification method was used to derive the linear model in the form of a transfer function of the order nine. The obtained model is then used to develop the linear feedback control algorithm for the cancellation of vibration by using the MFC star-shaped actuator (SIMO system). The MFC elements location is dealt with in this study with the use of a laser scanning vibrometer. The control schemes presented have the ability to compute the control effort and to apply it to the actuator within one sampling period. This control scheme is then illustrated through some numerical examples with simulations modelling the designed controller. The paper also describes the experimental results of the designed control system. Finally, the results obtained for the considered plate show that in the chosen frequency limit the designed structure of a closed-loop system with MFC elements provides a substantial vibration suppression.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.