The health condition of rolling bearing can directly influence to the efficiency and lifecycle of rotating machinery, thus monitoring and diagnosing the faults of rolling bearing is of great importance. Unfortunately, vibration signals of rolling bearing are usually overwhelmed by external noise, so the fault frequencies of rolling bearing cannot be readily obtained. In this paper, an improved feature extraction method called IMFs_PE, which combines the multivariate empirical mode decomposition with the permutation entropy, is proposed to extract fault frequencies from the noisy bearing vibration signals. First, the raw bearing vibration signals are filtered by an optimal band-pass filter determined by SK to remove the irrelative noise which is not in the same frequency band of fault frequencies. Then the filtered signals are processed by the IMFs_PE to get rid of the relative noise which is in the same frequency band of fault frequencies. Finally, a frequency domain condition indicator FFR(Fault Frequency Ratio), which measures the magnitude of fault frequencies in frequency domain, is calculated to compare the effectiveness of the feature extraction methods. The feature extraction method proposed in this paper has advantages of removing both irrelative noise and relative noise over other feature extraction methods. The effectiveness of the proposed method is validated by simulated and experimental bearing signals. And the results are shown that the proposed method outperforms other state of the art algorithms with regards to fault feature extraction of rolling bearing.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Background: This article proposes an extension of empirical wavelet transform (EWT) algorithm for multivariate signals specifically applied to cardiovascular physiological signals. Materials and methods: EWT is a newly proposed algorithm for extracting the modes in a signal and is based on the design of an adaptive wavelet filter bank. The proposed algorithm finds an optimum signal in the multivariate data set based on mode estimation strategy and then its corresponding spectra is segmented and utilized for extracting the modes across all the channels of the data set. Results: The proposed algorithm is able to find the common oscillatory modes within the multivariate data and can be applied for multichannel heterogeneous data analysis having unequal number of samples in different channels. The proposed algorithm was tested on different synthetic multivariate data and a real physiological trivariate data series of electrocardiogram, respiration, and blood pressure to justify its validation. Conclusions: In this article, the EWT is extended for multivariate signals and it was demonstrated that the component-wise processing of multivariate data leads to the alignment of common oscillating modes across the components.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.