Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MCNP4C
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The IsoAid LLC Inc. has been introduced ADVANTAGETM 103Pd brachytherapy seed in 2006. The aim of this work is to determine the dosimetric characteristics of this seed according to AAPM’s recommendation in TG43-U1 using MCNP4C computer code. The dose rate constant has been determined to be 0.694š0.001 cGy.h–1.U–1. The radial dose function has been calculated at distances from 0.25 to 7 cm. Two-dimensional anisotropy function have been calculated at distances from 0.25 to 7 cm and at angles from 0 to 90 degrees centigrade at 10 degrees centigrade increments. The one-dimensional anisotropy function and anisotropy constant have been also calculated. The anisotropy constant in water has been calculated as 0.872š0.001. The results of this investigation are compared with the results of Meigooni et al. obtained by PTRAN code in 2006 and Sowards results obtained by PTRAN code in 2007. The comparison of the dose rate constant and the one-dimensional anisotropy function obtained from the two codes shows good agreement; also the radial dose function at distances lower than 3 cm and the two-dimensional anisotropy function at angles greater than 20 degrees centigrade are in good agreement. But, for the calculated radial dose function at distances beyond 3 cm, we observed differences between our values and Meigooni et al. and Sowards results. Also, differences between the calculated two-dimensional anisotropy function using the two codes for angles smaller than 20 degrees centigrade are considerable. The differences between the results of MCNP4C and PTRAN codes could be related to the different cross-section data libraries used in these two codes.
EN
High energy linacs have several advantages including lower skin dose and higher dose rate at deep sighted tumors. But, at higher energies photonuclear reactions produce neutron contamination. Photoneutron contamination has been investigated from the early days of modern linacs. However, more studies have become possible using Monte Carlo codes developed in recent years. The aim of this study was to investigate the photoneutron spectrum and dose equivalent produced by an 18 MV Saturne linac at different points of a treatment room and its maze. The MCNP4C code was used to simulate the transport of photoneutrons produced by a typical 18 MV Saturne linac. The treatment room of a radiotherapy facility in which a Saturne 20 linac is installed was modeled. Neutron dose equivalent was calculated and its variations at various distances from the center of the X-ray beam was studied. It was noted that by increasing the distance from the center of the beam, fast neutrons decrease rapidly, but thermal neutrons do not change significantly. In addition, the photoneutron dose equivalent was lower for smaller fields. The fast photoneutrons were not recorded in the maze. It can be concluded that the fast photoneutrons are highly attenuated by concrete barrier, while the slow photoneutrons are increased. In addition, increasing the X-ray field size increases the photoneutron dose equivalent around the treatment room and maze. It seems that the walls play an effective role in increasing the photoneutron dose equivalent.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.