Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MAX phases
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Two methods were evaluated in terms of manufacturing of MAX phase preforms characterized with open porosity: microwave-assisted self-propagating high-temperature synthesis (SHS) and spark plasma sintering (SPS). The main purpose of fabrication of such open-porous preforms is that they can be successfully applied as a reinforcement in metal matrix composite (MMC) materials. In order to simulate the most similar conditions to microwave-assisted SHS, the sintering time of SPS was significantly reduced and the pressure was maintained at a minimum value. The chosen approach allows these two methods to be compared in terms of structure homogeneity, complete reactive charge conversion and energy effectivity. Study was performed in Ti-Al-C system, in which the samples were compacted from elemental powders of Ti, Al, C in molar ratio of 2:1:1. Manufactured materials after syntheses were subjected to SEM, XRD and STEM analyses in order to investigate their microstructures and chemical compositions. As was concluded, only microwave-assisted SHS synthesis allows the creation of MAX phases in the studied system. SPS technique led only to the formation of intermetallic secondary phases. The fabrication of MAX phases’ foams by microwave-assisted SHS presents some interesting advantages compared to conventional manufacturing methods. This work presents the characterization of foams obtained by microwave-assisted SHS comparing the results with materials produced by SPS. The analysis of SPS products for different sintering temperatures provided the better insight into the synthesis of MAX phases, supporting the established mechanism. Dissimilarities in the heating mechanisms that lead to the differing synthesis products were also discussed.
2
Content available remote Thermal properties of Al alloy matrix composites reinforced with MAX type phases
EN
A method was developed for manufacturing Al-Si alloy matrix composites reinforced with MAX phases by squeeze casting pressure infiltration of porous preforms. MAX phases in the Ti-Al-C system were synthesized using self-propagating hightemperature synthesis (SHS) in the microwave assisted mode in order to obtain spatial structures with open porosity consisting of a mixture of Ti2AlC and Ti3AlC2. The manufactured composite together with a reference sample of sole matrix material were subjected to the testing of thermal properties such as: thermal conductivity, thermal diffusivity and thermal expansion in the temperature range of 50÷500°C, which corresponds to the expected working temperatures of the material. The specific heat and mass change during heating were also established by means of thermogravimetric analysis. The obtained thermal conductivity coefficients for the Al-Si+Ti-Al-C composite were higher than for the sole MAX phases and equaled 27÷29 W/m·K. The thermal expansion values for the composite material were reduced two-fold in comparison with the matrix.
PL
Opracowano metodę wytwarzania kompozytów na osnowie stopu Al-Si wzmocnionego fazami typu MAX metodą infiltracji ciśnieniowej porowatych preform. Fazy typu MAX syntezowano metodą samorozprzestrzeniającej się syntezy wysokotemperaturowej (SHS), wspomaganej mikrofalami w układzie Ti-Al-C, w celu uzyskania przestrzennych struktur o porowatości otwartej z mieszaniny faz Ti2AlC i Ti3AlC2. Wytworzone materiały kompozytowe wraz z próbką referencyjną w postaci materiału osnowy poddano badaniom właściwości cieplnych, tj. przewodności cieplnej, dyfuzyjności cieplnej oraz rozszerzalności cieplnej w zakresie temperatur 50÷500°C, który przyjęto jako spodziewany zakres temperatur pracy wytworzonych materiałów. Wyznaczono również wartości ciepła właściwego oraz, za pomocą analizy termograwimetrycznej, zmiany masy w stosunku do zmiany temperatury. Uzyskane współczynniki przewodności cieplnej dla materiału kompozytowego Al-Si+Ti-Al-C były wyższe niż dla samych faz typu MAX i wynosiły 27÷29 W/m·K. Zmierzone wartości współczynnika rozszerzalności cieplnej dla materiału kompozytowego były dwukrotnie niższe w odniesieniu do materiału osnowy.
3
EN
A method was developed to manufacture Ti3SiC2 MAX phase preforms characterized by open porosity. Samples compacted from elemental powders of Ti, SiC and C with the molar ratio of 3:1.2:1 were heated and synthesized in a microwave field under atmospheric pressure. As this particular composition of elements exhibits rather low reactivity, it was necessary to apply the “coupled” mode of the SHS method. The initiated synthesis first proceeded with the formation of Si-Ti intermetallic and TiC precipitates, whose highly exothermic reactions resulted in a significant increase in temperature to ca. 1800°C. Next, these phases were almost completely transformed into a plate-like Ti3SiC2 MAX phase forming the porous structure of the samples. Although the majority of the synthesized material consisted of Ti3SiC2, some inclusions such as TiSi2, TiC and SiC were also found and identified in the material by the means of scanning electron microscopy and XRD analysis. The manufactured preforms can be used for components working in extreme conditions (heat exchangers, catalyst substrates, filters) or as a reinforcement for composite materials.
PL
Opracowano metodę wytwarzania preform fazy Ti3SiC2 typu MAX o porowatości otwartej. Sprasowane z proszków elementarnych Ti, SiC i C w stosunku molowym 3:1.2:1 próbki ogrzewano i syntetyzowano w polu mikrofalowym pod ciśnieniem atmosferycznym. Ponieważ ta szczególna kompozycja pierwiastków wykazuje relatywnie niską reaktywność, konieczne było zastosowanie "sprzężonego" trybu metody SHS. Po inicjacji syntezy jako pierwsze wytworzone zostają fazy: Si-Ti i TiC, pomiędzy którymi zachodzą wysoce egzotermiczne reakcje powodujące gwałtowny wzrost temperatury do ok. 1800°C. Następnie fazy te są niemal całkowicie przekształcane w płytkowe wydzielenia fazy Ti3SiC2 typu MAX, formując jednocześnie porowatą strukturę kształtek. Pomimo faktu, iż w przeważającej część otrzymany materiał stanowiło Ti3SiC2, znaleziono w nim również niewielkie ilości wtrąceń, które za pomocą skaningowej mikroskopii elektronowej (SEM) oraz analizy składu chemicznego metodą dyfrakcji rentgenowskiej (XRD) zidentyfikowano jako TiSi2, TiC i SiC. Wytworzone preformy mogą znaleźć zastosowanie w budowie elementów pracujących w ekstremalnych warunkach (wymienniki ciepła, katalizatory, filtry) lub jako wzmocnienia materiałów kompozytowych.
4
Content available remote Tribological properties of Al matrix composites reinforced with MAX type phases
EN
A method was developed to manufacture Al-Si alloy matrix composites reinforced with MAX phases by squeeze casting pressure infiltration of porous preforms. The MAX phases were synthesized using self-propagating high-temperature synthesis (SHS) in the microwave assisted mode. For the produced composites abrasive wear resistance tests were carried out using the pin-on-flat method with reciprocating motion for different load values (0.1, 0.2 and 0.5 MPa), while maintaining other parameters (sliding distance, speed) constant. The sliding distance equaled 2000 m with the average speed of 0.3 m/s, whereas the flat counterpart was made of CT70 tool steel with the hardness of 67 HRC and roughness Ra = 0.4÷0.6. Before testing both of the tribosurfaces were degreased with acetone. Volumetric sample consumption was investigated and changes in the structure of the working surfaces were analyzed. Optical and scanning electron microscopy analysis were also performed and elaborated in order to facilitate understanding and interpretation of the wear mechanisms. It was confirmed that the composite materials exhibit more than two times higher wear resistance than that of the matrix itself. The wear rate of the matrix falls within the range of 3.5÷5.5-10−4mm3/Nm, while for the composite material - 1.3÷2.4-10−4 mm3/Nm. In the Al-Si matrix the main wear mechanism was identified to be based on plastic deformation composed of scaling and cracking processes, while for the MAX phase composite it is principally abrasive wear leading to pre-fracture, delamination and extraction of MAX phase platelets.
PL
Opracowano metodę wytwarzania kompozytów na osnowie stopu Al-Si wzmocnionego fazami typu MAX metodą infiltracji ciśnieniowej porowatych preform. Fazy typu MAX syntezowano metodą samorozprzestrzeniającej się syntezy wysokotemperaturowej (SHS) wspomaganej mikrofalami. Dla wytworzonych kompozytów przeprowadzono badania odporności na zużywanie ścierne metodą pin-on-flat realizującą ruch posuwisto-zwrotny dla różnych wartości obciążenia (0,1, 0,2 i 0,5 MPa) przy zachowaniu pozostałych parametrów (droga ścierania, prędkość) stałych. Droga ścierania wynosiła 2000 m przy prędkości średniej 0,3 m/s, zaś przeciwpróbka wykonana była ze stali. Zbadano objętościowe zużycie próbki oraz przeanalizowano zmiany w strukturze powierzchni współpracujących. Przeprowadzono analizę mikroskopową metodami mikroskopii optycznej i skaningowej w celu ułatwienia zrozumienia i interpretacji mechanizmów zużycia. Potwierdzono, że materiały kompozytowe wykazują ponad dwa razy większą odporność na zużywanie ścierne od materiału osnowy. Współczynnik zużycia osnowy wynosił 3,5÷5,5x10−4 mm3/Nm, podczas gdy dla materiału kompozytowego był równy 1,3÷2,4⋅10−4 mm3/Nm. W przypadku osnowy Al-Si zaobserwowano mechanizm zużycia oparty na odkształceniu plastycznym, zaś dla kompozytu wzmocnionego fazami typu MAX było to głównie zużywanie ścierne, prowadzące do powstania pęknięć, delaminacji i ekstrakcji fragmentów płytek faz typu MAX.
PL
Termodynamicznie stabilne węgliki o budowie nanolaminatowej stanowią grupę materiałów łączących w sobie cechy zarówno metali, jak i ceramiki. Materiały te wytworzone w postaci porowatej mogą być zastosowane między innymi jako przewodzące prąd elektryczny podłoża do katalizatorów oraz matryce do kompozytów o strukturze infiltrowanej. W niniejszej pracy wykorzystano metodę żelowania spienionej zawiesiny do wytworzenia porowatych tworzyw z Ti2AlC. W roli środka żelującego użyto agarozę. Przygotowano gęstwy o różnych stężeniach agarozy: 0,8%, 1,1% oraz 1,3% wag. w przeliczeniu na masę proszku ceramicznego, które następnie spieniano i żelowano w celu sporządzenia porowatych kształtek. Stwierdzono, że lepkość zawiesiny Ti2AlC przeznaczonej do spieniania jest czynnikiem kształtującym porowatość całkowitą oraz rozmiar komórek pianki i okien w ściankach komórek. Wraz ze wzrostem lepkości zawiesiny przeznaczonej do spieniania zaobserwowano zmniejszanie porowatości całkowitej w piankach oraz rozmiaru komórek pianki i okien w ściankach komórek.
EN
Ternary carbides such as MAX phases are nano-layered ceramics that exhibit a unique combination of characteristics typical of both ceramics and metals. In porous forms they can be used for example as catalyst supports or as preforms for metal-ceramic interpenetrating composites. In this work porous Ti2AlC foams were manufactured by the gel-casting method with the use of agarose as a gelling agent. The rheological properties of Ti2AlC slurries with different agarose content were investigated. A correlation between the viscosity of the starting slurry and the microstructure of the final foam has been found. The mean cell size and window size as well as the total porosity decreased with increasing agarose concentration in the starting slurry.
6
Content available remote Microwave assisted self-propagating high-temperature synthesis of Ti2AlC MAX phase
EN
A novel manufacturing method of Ti2AlC MAX phases with TiC carbides was elaborated. Compacted from elemental powders, the samples were heated and synthesized in a microwave field under atmospheric pressure. Microwave radiation selectively heats the reactant particles, though additional SiC support was required. Graphite can be classified as a good absorber whereas in Al, Ti metallic particle electric eddy currents are induced only on the surface. Microwaves heat material from the inside to the outside and usually concentrate on the interface between materials with a different dielectric loss factor. Therefore, it is possible to induce and conduct the reaction, on the microscale, at metal-ceramic or even metal-metal contact points. Energy was transferred from the magnetron through the waveguide and after a few seconds synthesis began and spread to the entire volume of the cylindrical sample. The initiated SHS synthesis first proceeded with the formation of Al-Ti intermetallic and TiC precipitates whose highly exothermic reactions resulted in a significant increase in temperature to ca. 1600°C. Next, these phases are almost completely transformed into plate-like Ti-Al-C MAX phases forming a porous structure of the samples. Such materials can be ideal for components working in extreme conditions (heat exchangers, catalyst substrates, filters) or for composite reinforcing.
PL
Opracowano metodę wytwarzania MAX faz typu Ti2AlC zawierającej wtrącenia węglików TiC. W celu zainicjowania syntezy wypraskę z proszków nagrzewano w polu mikrofalowym pod ciśnieniem atmosferycznym. Promieniowanie mikrofalowe selektywnie nagrzewa proszki substratów, jednakże zastosowano dodatkowo podkładkę wykonaną z SiC, która pełniła rolę absorbera. Grafit jest uważany za materiał dobrze pochłaniający energię mikrofalową, natomiast na powierzchni drobnych cząstek metalicznych Al, Ti są indukowane prądy elektryczne, co przy określonej oporności skutkuje wzrostem temperatury. Mikrofale nagrzewają materiał od wewnątrz i często koncentrują się na styku pomiędzy materiałami o różnym współczynniku strat dielektrycznych. W związku z tym możliwe jest indukowanie i kontrolowanie reakcji na styku cząstek metal-ceramika czy nawet metal-metal. Energia mikrofalowa była przenoszona z magnetronu, za pomocą falowodu, do komory procesowej, aby po kilku sekundach uruchomić syntezę SHS, która rozprzestrzeniała się w całej objętości cylindrycznej próbki. Po zainicjowaniu reakcji powstawały związki międzymetaliczne typu Ti-Al oraz węgliki TiC, co wydzielało znaczne ilości ciepła, powodując wzrost temperatury do ok. 1600°C. Następnie, związki te prawie całkowicie przekształcają się w płytkowe Ti-Al-C MAX fazy, które w makroskali tworzą porowatą strukturę próbki. Materiały takie mogą być wykorzystane na elementy pracujące w ekstremalnych warunkach (wymienniki ciepła, katalizatory, filtry) lub jako umocnienie materiałów kompozytowych.
PL
Kompozyty metalowo-ceramiczne o strukturze infiltrowanej charakteryzują się unikalną przestrzenną strukturą wzajemnie przenikających się szkieletów fazy metalowej i fazy ceramicznej. Najczęstszym sposobem wytwarzania tego typu kompozytów jest infiltracja roztopionego metalu do porowatej kształtki ceramicznej. W tej pracy do wytworzenia porowatych materiałów z T i2AlC zastosowano metodę żelowania spienionej zawiesiny ceramicznej (ang. gel-casting of foams). Metoda ta pozwala na wytworzenie ceramiki porowatej w postaci materiałów piankowych. Wytworzono pianki ceramiczne o porowatości całkowitej w zakresie 80÷90 %, które następnie charakteryzowano pod względem rozmiarów makroporów i połączeń między makroporami, porowatości otwartej i wytrzymałości na ściskanie. Wielkości te określają przydatność ceramiki porowatej do procesu infiltracji ciśnieniowej roztopionymi metalami. Stwierdzono, że rozmiar makroporów zawarty był w granicach 381÷547 μm, a rozmiar połączeń między makroporami mieścił się w zakresie od 77 do 134 μm. Pianki o porowatości w zakresie 80÷90 % charakteryzowały się dużą, jak na materiały wysokoporowate wytrzymałością na ściskanie, która zawarta była granicach 8÷18 MPa.
EN
MAX phases are a group of advanced ceramics with nano-layered structure. They have Mn+1AXn composition, where M is an early transition metal, A is an element of A group and X is a carbon and/or nitrogen. The growing interest in this novel group of materials results in their unique combination of characteristics typical of both ceramics and metals. They are elastically stiff good thermal and electrical conductors, resistant to chemical attack, and have relatively low thermal expansion coefficients. On the other hand, they are relatively soft and most are readily machinable, thermal shock resistant and damage tolerant. MAX phases can be produced both in dense and in porous form. In porous form they can be used for example as catalyst supports and preforms for metal-ceramic interpenetrating composites. One method to achieve an interpenetrating microstructure of a composite is the infiltration of a molten metal into a porous ceramic body called a preform. In this work porous Ti2AlC foams were manufactured by the gel-casting method with the use of agarose as an environmentally friendly gelling agent. This technique consists of the combination of the gel-casting process as well as the aeration of ceramic suspensions. It was used because it allows to manufacture porous ceramics in the form of highly porous bodies with homogeneous morphology with controlled porosity and pore size. Ti2AlC foams possessing total porosity in the range of 60÷90 % were manufactured and their microstructure was characterized in order to determine their applicability for the metal melt infiltration technique. Foams having total porosity of 77,9 and 85,3 % were chosen for the further investigation because of the fact that their open porosity was almost the same as the total porosity. As it was shown on the SEM images the samples presented a highly interconnected porous network. The average cell and cell window size was determined on the base of SEM image analysis. Cell size ranged from 381 to 547 μm and the average cell window size ranged from 77 to 134 μm. The strength of the foams was high and ranged from 8 to 18 MPa for the materials having porosity of 85,3 and 77,9 % respectively. This relatively high strength is typical for the porous materials manufactured by gelcasting technique. A relative high compression strength as well as the open porosity of Ti2AlC foams make them suitable for pressure metal melt infiltration in order to produce ceramic-metal interpenetrating composites.
EN
Authors present results of works on the interesting new group of advanced ceramics called MAX phases – Ti-based ternary carbides and nitrides. They have an original layered structure involved highly anisotropic properties laying between ceramics and metals, with high elastic modulus, low hardness, very high fracture toughness and high electrical and heat conductivity. Using Self-Propagating High-Temperature Synthesis (SHS) in the combustion regime it is possible to prepare MAX phases-rich powders that can be used as the precursors for preparation of dense MAX polycrystals by presureless sintering or hot-pressing. Different novel Ti-based phases with layered structures, namely: Ti3AlC2 and Ti2AlC have been synthesized in a combustion regime. The possibility of controlling of combustion phenomena for obtaining near single-phase products is discussed in details as well as some of properties of the materials tested as structure and functional ceramics.
PL
Autorzy przedstawiają wyniki badań nad nową interesującą grupą zaawansowanych materiałów ceramicznych nazywanych fazami MAX – potrójnymi węglikami i azotkami tytanowymi. Posiadają one oryginalną strukturę warstwową, z której wynikają silnie anizotropowe właściwości (wysokie moduły sprężystości, niska twardość, bardzo wysoka odporność na kruche pękanie, dobre właściwości elektryczne i cieplne) umiejscawiające je pomiędzy ceramiką a metalami. Dzięki zastosowaniu Samorozwijającej się Syntezy Wysokotemperaturowej SHS możliwe było otrzymywanie bogatych w fazy MAX proszków, mogących służyć jako prekursory w preparatyce gęstych polikryształów za pomocą spiekania pod ciśnieniem lub swobodnego. Przeprowadzone zostały syntezy dwóch materiałów warstwowych: Ti3AlC2 i Ti2AlC. W artykule przedstawiono możliwości kontrolowania procesu spalania w celu uzyskania niemal jednofazowych produktów a także przedstawiono niektóre właściwości badanych materiałów pod kątem zastosowania jako materiały funkcjonalne i strukturalne.
PL
Przedstawiono wyniki komplementarnej charakteryzacji, technikami XRD i XAS, cienkich warstw Ti-Si-C osadzanych metodą wysokotemperaturowego magnetronowego rozpylania katodowego na podłożach szafirowych (00.1) z wykorzystaniem targetów pierwiastkowych Ti, Si i C. Badania dyfrakcyjne wykazały silną zależność składu fazowego warstw od wielkości mocy podawanych na poszczególne targety podczas ich osadzania, natomiast badania spektroskopii absorpcyjnej pozwoliły na określenie zmian w funkcji tej mocy lokalnego, uśrednionego porządku atomowego w otoczeniu atomów Ti i porównanie go z porządkiem jaki powinien występować w modelowym związku Ti₃SiC₂. Wykonano dwie grupy próbek: o relatywnie wysokiej mocy targetu Si i średniej targetu C oraz o względnie niskiej mocy targetu Si i wysokiej targetu C.
EN
This work presents the results of complementary use of XRD and XAS for the characterisation of thin Ti-Si-C films deposited via high temperature magnetron sputtering onto sapphire (00.1) substrates using elemental Ti, Si and C targets. The XRD studies showed a strong dependence of the phase composition of the films on the powers fed to the individual targets during deposition. The XAS studies enabled to determine the local atomic order in Ti neighbourhood and differences in averaged atomic order in function of power fed as compared to a Ti₃SiC₂ model. Two sample sets were fabricated, one with a relatively high power fed to the Si target and a medium power fed to the C target and the second where a relatively low power was fed to the Si target and a high one to the C target.
EN
Ternary and quaternary materials in Ti-Al-C-N system are specific due to the heterodesmic character of chemical bounds. Such materials can combine properties of ceramics and metal. In the paper SHS synthesis of powders with different stoichiometry, Ti2AlN, Ti3AlC2 and Ti3Al(C, N)2 with usage of intermetallic compounds as precursors is presented. The powders were hot-presses and mechanical and structural properties of dense bodies were examined.
PL
Potrójne oraz poczwórne materiały należące do układu Ti-Al-C-N zwracają na siebie uwagę ze względu na szczególne właściwości, plasujące je pomiędzy materiałami metalicznymi i ceramicznymi. W niniejszej pracy przedstawiono proces syntezy SHS, w wyniku której otrzymywano proszki Ti2AlN, Ti3AlC2 i Ti3Al(C, N)2. Jako substraty stosowane były samodzielnie otrzymywane proszki międzymetaliczne z układu Ti-Al. Otrzymane proszki materiałów potrójnych i poczwórnych prasowano na gorąco. Następnie badano właściwości mechaniczne i strukturalne otrzymanych gęstych spieków.
PL
Praca prezentuje wyniki dotyczące strukturyzacji cienkich warstw Ti₃ SiC₂ osadzanych w temperaturach: pokojowej. 100, 300, 600, 900°C, na podłożach: Si (100). AI₂O₃ (0001), GaN (0001). Do trawienia użyto plazmy CF₄/O₂. Zbadano wpływ mocy oraz dodatku tlenu na szybkość trawienia Ti₃ SiC₂.
EN
The paper reports on plasma etching of Ti₃SiC₂ thin films, deposited on Si (100), Al₂O₃ (0001), GaN (0001), at temperatures: ambient, 100, 300, 600, 900°C. C₄/O₂ plasma was used. Influence of power and oxygen addition on etching rate was investigated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.