Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  MARKAL
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper addresses issues related to greenhouse gas emissions in the European Union and measures to reduce them, in particular the European Emissions Trading Scheme (EU ETS). A model of the Polish electricity generation subsystem, taking into account EU ETS mechanisms, has been developed using the MARKAL optimization package. Data collected on the basis of available projects, regulations and statistics were entered into the model. The results of the modelling were used for formulating the following conclusions. Even the very high price of emission allowances (103 EUR/t CO2-eq) will not result in complete decarbonisation of the power sector by 2030. However, the allowance price levels will have a significant impact on the structure of electricity generation and the electrical power available in the system. Only high allowance prices will be an incentive to invest in renewable and nuclear energy based generation units. Power generation technologies with CO2 capture systems can be a chance to sustain the carbon economy while reducing emissions, but the problem will be the large-scale carbon dioxide storage.
PL
Artykuł dotyczy problematyki emisji gazów cieplarnianych w Unii Europejskiej oraz działań mających na celu ich redukcję, w szczególności Europejskiego Systemu Handlu Uprawnieniami do Emisji (EU ETS). Model polskiego podsystemu wytwarzania energii elektrycznej, uwzględniający mechanizmy EU ETS, został opracowany za pomocą pakietu optymalizacyjnego MARKAL. Do modelu zostały wprowadzone dane zebrane na podstawie dostępnych projektów, rozporządzeń i danych statystycznych. Wyniki działania modelu posłużyły w sformułowaniu następujących wniosków. Nawet bardzo wysoka cena uprawnień do emisji (103 EUR/t CO2-eq) nie będzie skutkować całkowitą dekarbonizacją sektora elektroenergetycznego w perspektywie do 2030 roku. Jednakże poziomy cen uprawnień będą miały istotny wpływ na strukturę wytwarzania energii elektrycznej i osiągalną moc elektryczną w systemie. Jedynie wysokie ceny uprawnień będą bodźcem do inwestowania w jednostki wytwórcze wykorzystujące odnawialne zasoby energii i energię jądrową. Technologie wytwarzania energii elektrycznej wyposażone w układy wychwytu CO2 mogą być szansą na utrzymanie gospodarki węglowej przy jednoczesnej redukcji emisji, ale problemem będzie składowanie dwutlenku węgla na dużą skalę.
EN
In this paper, renewable energy sources (RES) support mechanisms in Poland was presented with perspectives of proposed support system modifications, discussed in the project of Renewable Energy Act. In addition, MARKAL model of RES support mechanism was presented, taking into account technology-specific multiplication factors. Two model runs with emission trading system in place and two additional runs without emission trade were performed. The latter runs were analyzed in view of the 40% target for Poland by 2040 (renewable electricity share in final consumption) with emphasis on investments in renewable technology options and potential costs of support systems.
PL
W niniejszym referacie, zaprezentowano stan legislacji w zakresie promowania OŹE z perspektywami modyfikacji systemu wsparcia, które wystąpią w przypadku wejścia w życie Ustawy o odnawialnych źródłach energii. Ponadto, opisano odwzorowanie w modelu MARKAL jednego z mechanizmów promowania OŹE, proponowanych podczas prac nad ustawą. Mechanizm ten opierał się na współczynnikach korekcyjnych, przypisanych poszczególnym technologiom. Opracowano dwa przypadki, w których system handlu emisjami funkcjonował, oraz dwa kolejne, w których zrezygnowano z handlu uprawnieniami do emisji CO2. Rezultaty tych dwóch ostatnich zostały poddane szczegółowej analizie. Szczególny nacisk położono w niej na wymagane nakłady inwestycyjne w technologie oparte na OŻE oraz potencjalne koszty systemu wsparcia. Wyniki przedstawiono w kontekście celu strategicznego polegającego na osiągnięciu 40-procentowego udziału energii elektrycznej z OŹE w całkowitej sprzedaży energii elektrycznej odbiorcom końcowym.
PL
Dyrektywa 2009/28/WE, promująca stosowanie energii ze źródeł odnawialnych, nakłada na Polskę obowiązek zwiększenia do roku 2030 udziału energii wyprodukowanej w źródłach odnawialnych do 20% w całkowitym zużyciu energii. Realizacja tego celu wiąże się ze zmianą obecnej infrastruktury systemu energetycznego, opartego w znacznej części na krajowych surowcach energetycznych: węglu kamiennym i brunatnym. Polska posiada znaczne zasoby węgla kamiennego i brunatnego i należy do czołówki producentów tych surowców w Europie i na świecie. Sytuacja ta przez wiele lat gwarantowała duże bezpieczeństwo energetyczne i stosunkowo słabe uzależnienie Polski od importu innych paliw i nośników energii. Jednak w świetle polityki energetycznej UE struktura krajowych surowców energetycznych będzie się zmieniać. W celu określenia kształtu krajowego systemu energetycznego oraz roli węgla kamiennego i brunatnego w produkcji energii w świetle zapisów przywołanej dyrektywy należy przeprowadzić analizę wszystkich warunków wpływających na przedmiot badania. Kryterium ekonomiczne jest jednym z głównych elementów każdego procesu decyzyjnego przy wyznaczaniu optymalnej alokacji zasobów energetycznych. Wszystkie te uwarunkowania sprzyjają zasadności stosowania programów komputerowych jako narzędzi prognostycznych, symulacyjnych czy optymalizacyjnych. Na potrzeby prowadzonych analiz opracowano model prognozujący funkcjonowanie krajowego systemu energetycznego do roku 2030 w świetle nałożonych wymogów, w którym uwzględniono wymienione aspekty w postaci szeregu ograniczeń, a następnie całość zoptymalizowano. Model opracowano w programie MARKAL, który jest narzędziem optymalizacyjnym, stosowanym do zintegrowanego planowania energetycznego i środowiskowego. W pracy przedstawiono wyniki modelowe dotyczące kształtu krajowego systemu energetycznego oraz pozycji węgla kamiennego i brunatnego w strukturze produkcji energii do roku 2030 w świetle realizacji obowiązku zwiększenia udziału energii ze źródeł odnawialnych.
EN
The European Directive 2009/28/EC imposes on Poland an obligation to increase the share of energy from renewable sources to 20% of total energy consumption by 2030. The implementation of that objective most certainly will result in significant changes to the current energy system infrastructure, which is based significantly on national energy sources such as hard coal and lignite. Poland possesses significant resources of hard coal and lignite, and is one of the largest producers not only in Europe but also worldwide. That situation has guaranteed high energy security for many years and a relatively low dependence on imported energy sources. However, in the light of the long-term energy policy, national structure will be changing. In order to determine the shape of the national energy system and the role of coal and lignite in power production in the light of the provisions of that Directive, an analysis of all conditions affecting the subject of study should be carried out. Economic criterion is one of the main elements of each decision-making process when determining the optimal allocation of energy resources. All of these factors contribute to the suitability of the use of computer programs as forecasting, simulation and optimization tools. For the purposes of the analysis, a model the forecasting functioning of the national energy system by 2030 in the light of requirements imposed was created. Above-mentioned aspects and constraints were taken into account and the whole model was optimized. The model was developed using the MARKAL program, which is an optimizing tool, applied to the integrated energy and environmental planning. This work presents the model results of the design of the national energy system and position of hard coal and lignite in the structure of energy production by 2030 taking into account the implementation of the obligation to increase the contribution of energy from renewable sources.
EN
The author of this paper presented the results of a system analysis using MARKAL model, aiming at the optimization of nuclear power share in power generation structure in Poland in time perspective by 2060. Optimization criterion is the minimization of the objective function, i.e. the total cost of energy system, taking into account constraints related to CO2, SOx and NOx emissions and obligatory shares of electricity from renewable energy sources and generated in high-efficiency cogeneration. The results of model runs include the least-cost structure of both electricity generation and installed capacity, with emphasis put on nuclear power.
PL
Autor przedstawił w artykule wyniki analizy systemowej z wykorzystaniem modelu MARKAL, która miała na celu określenie optymalnego udziału elektrowni jądrowych na tle innych opcji technologicznych w krajowej strukturze wytwarzania energii elektrycznej, w perspektywie do 2060 roku. Kryterium optymalizacyjnym była minimalizacja kosztów dostawy energii elektrycznej od wytwórcy do odbiorcy końcowego, z uwzględnieniem ograniczeń związanych z emisjami CO2, SOx i NOx oraz obowiązkowego udziału energii elektrycznej wytworzonej w odnawialnych źródłach energii (OZE) i w wysokosprawnej kogeneracji. Wyniki modelu obejmowały optymalną pod względem kosztu strukturę wytwarzania energii elektrycznej i strukturę mocy osiągalnej, ze szczególnym uwzględnieniem energetyki jądrowej.
PL
W niniejszym referacie przedstawiono wyniki analizy systemowej z wykorzystaniem modelu MARKAL. Analiza ta miała na celu określenie optymalnego udziału elektrowni jądrowych, na tle innych opcji technologicznych, w krajowej strukturze wytwarzania energii elektrycznej w perspektywie do 2060 roku. Kryterium optymalizacyjnym była minimalizacja kosztów dostawy energii elektrycznej od wytwórcy do odbiorcy końcowego, z uwzględnieniem ograniczeń związanych z emisjami CO2, SOx i NOx oraz obowiązkowego udziału energii elektrycznej wytworzonej w odnawialnych źródłach energii oraz wytworzonej w wysokosprawnej kogeneracji. Wyniki modelu obejmowały optymalną, pod względem kosztu, strukturę wytwarzania energii elektrycznej i strukturę mocy osiągalnej, ze szczególnym uwzględnieniem energetyki jądrowej.
EN
In this paper, results of energy system analysis using MARKAL modeling framework were presented. The thrust of this study was the calculation of optimal share of nuclear power in the technological mix of electricity generation in Poland, in time perspective by 2060. Nuclear power was presented as one of the technological options in power system. The optimization criterion was the minimization of the objective function, i.e. total system cost, discounted back to the first year of the time horizon (2009). The optimization procedure account for not only the expenditures accompanying energy production and its distribution to the final consumer, but also take into account costs and constraints resulting from the implementation of CO2, NOx and SOx emission trading schemes plus renewable and high-efficiency cogeneration quota obligations and tradable-certificates-based promotion mechanisms. MARKAL model results presented in this study include: fuel/technological mix of both electricity generation and installed capacity, calculated on a least-cost basis, with emphasis on nuclear power.
EN
In this paper we have presented the concept of Polish MARKAL optimization model developed for the needs of power generation scenarios in long-term perspective i.e. by 2040. The depiction of Polish MARKAL with Reference Energy System structure was provided. In addition, basic model assumptions, energy technology database, projections of electricity demand and power plant ageing pathways were presented. Our goal is to test MARKAL as a tool for the needs of modeling renewable energy sources (RES) and implementation of RES-E (green electricity) promotion mechanisms in a long-term modeling perspective for Poland. This paper will be followed by a paper with RES support system discussion and model results analysis.
PL
W niniejszym referacie autorzy zaprezentowali koncepcję modelu optymalizacyjnego MARAKAL dla Polski, opracowanego na potrzeby scenariuszy rozwoju podsystemu wytwarzania energii elektrycznej w Polsce w perspektywie długoterminowej tj. do roku 2040. Podano również opis polskiego modelu MARKAL oraz struktury Energetycznego Układu Odniesienia (Reference Energy System). W artykule zawarto również podstawowe założenia modelu, opis bazy danych technologii energetycznych oraz prognozy zapotrzebowania na energię eklektyczną i prognozy wycofywania bloków energetycznych z eksploatacji. Celem autorów jest przetestowanie modelu MARKAL jako narzędzia analizy rozwoju odnawialnych źródeł energii i implementacji mechanizmów wspierania OŹE w Polsce w długoterminowej perspektywie czasowej.
EN
The main objectives of European energy policy include: security of energy supply, reduction of greenhouse gas emissions and the development of efficient and clean energy technologies. The obligation to fulfil these objectives is connected, among others, with the optimization of the development of all energy system i.e. a group of facilities and equipment for the collection, transmission, processing, distribution and use of energy in all its forms. Computer programs such as MARKAL, TIMES, ENPEP, MIDAS are the basic tools for modelling different energy systems. Various simulation, optimization and macro models are created with them. Multi-criteria methods are also used. In this paper the use of MARKAL as a tool for the optimization of an energy system was the matter of research. The article presents the characteristics of MARKAL. Additionally, it includes an example of the use of the program to create a model of the supply of heat for the province of Silesia together with its results.
PL
Do podstawowych celów europejskiej polityki energetycznej należą bezpieczeństwo dostaw energii, ograniczenie emisji gazów cieplarnianych oraz rozwój efektywnych i czystych technologii energetycznych. Osiągnięcie tych celów wiąże się m.in. z optymalizacją rozwoju całego systemu energetycznego, czyli zespołu obiektów i urządzeń służących do pozyskiwania, przesyłania, przetwarzania, rozdzielania i użytkowania energii we wszystkich jej postaciach. Podstawowym narzędziem wykorzystywanym do modelowania systemów energetycznych są programy komputerowe typu MARKAL, TIMES, ENPEP, MIDAS, dzięki którym tworzone są modele optymalizacyjne, symulacyjne, makroekonomiczne. Stosuje się również metody wielokryterialne. W artykule przedstawiono wyniki prowadzonych badań, przede wszystkim charakterystykę programu MARKAL jako narzędzia optymalizacyjnego systemów energetycznych oraz podano przykład zastosowania tego programu do stworzenia modelu zaopatrzenia w ciepło województwa śląskiego.
PL
W artykule opisano możliwości, jakie daje program komputerowy ­MARKAL. Jest to narzędzie służące do budowy i optymalizacji systemu energetycznego, którego struktura oparta jest na programowaniu liniowym. Efektem pracy jest „Modelowe rozwiązanie wykorzystania potencjału energetycznego biomasy w Polsce przy użyciu narzędzia optymalizacyjnego technologii energetycznych MARKAL”. Przedstawiono charakterystykę programu MARKAL, opis struktury krajowego systemu energetycznego w programie MARKAL, propozycję rozwiązań technologicznych nowych elektrowni, elektrociepłowni oraz ciepłowni, a także uzyskane rezultaty modelowania. Wyniki te przedstawiają optymalną ścieżkę technologiczną pozyskania energii elektrycznej i ciepła do roku 2030 oraz pozyskania paliw do ich produkcji. Optymalizacja systemu energetycznego w horyzoncie długookresowym jest procesem złożonym, zależnym od szeregu czynników. Podstawowym zadaniem krajowych systemów energetycznych jest pokrycie prognozowanego zapotrzebowania na nośniki energii. Konieczność zapewnienia bezpieczeństwa energetycznego kraju nakłada obowiązek zróżnicowania źródeł wytwarzania energii. Dodatkowo należy pamiętać o wypełnieniu zobowiązań Polski w kwestii redukcji emisji zanieczyszczeń gazowych. Długoterminowy horyzont czasowy modelu zobowiązuje do uwzględnienia wszystkich możliwych, co nie znaczy obecnie dostępnych, technologii wytwórczych i sposobów pokrycia popytu energetycznego. Autorzy mają głównie na myśli uwzględnienie odnawialnych źródeł energii, paliwa jądrowego, technologii zgazowania węgla. Uwarunkowania te sprzyjają zasadności stosowania programów komputerowych jako narzędzi prognozujących, symulacyjnych czy optymalizujących stan sektora energetycznego. Podstawowym paliwem do produkcji energii elektrycznej i ciepła do roku 2030 będzie węgiel kamienny, po roku 2015 zmniejszy się zużycie gazu ziemnego. Zauważono wyraźny, systematyczny wzrost zastosowania biomasy i biogazu, którego udział w 2030 roku będzie stanowić blisko 15% wszystkich paliw wykorzystywanych do produkcji energii elektrycznej i ciepła. Produkcja energii elektrycznej z elektrowni wodnych i szczytowo-pompowych będzie na stałym poziomie w całym okresie, podobnie dla elektrowni wiatrowych. Otrzymane wyniki modelowania potwierdzają, że struktura programu MARKAL oparta jest na programowaniu liniowym. Model wybrał jako technologie priorytetowe w krajowej strukturze systemu energetycznego nowe elektrownie cieplne i elektrociepłownie oparte na węglu kamiennym i brunatnym oraz nowe elektrociepłownie biogazowe. Są to opcje technologiczne zapewniające uzyskanie najniższego kosztu całego systemu energetycznego, a jednocześnie pozwalające na osiągnięcie celów strategicznych w zakresie minimalnego udziału energii elektrycznej wytworzonej w źródłach odnawialnych i w wysokosprawnej kogeneracji w końcowym zużyciu energii elektrycznej w Polsce
EN
Described are possibilities which gives you the MARKAL computer program. It is a tool, serving for building and optimization of a power system, which structure is based on linear programming. The effect of its work is “Model solution of biomass energy potential utilization in Poland with the application of the energy technology systems optimization tool MARKAL”. Presented is the MARKAL program characteristics, the description of the Polish power system in the MARKAL program, a proposal of new technological solutions for power plants, CHP plants and heating stations, and also the obtained modelling results. The effects present the optimum technology path to obtain electric energy and heat until the year 2030 and fuels for their generation. Power system optimization in a long-range time horizon is a complex process dependent on many factors. The basic task of national power systems is to cover the prognozed demand for energy carriers. The need to ensure the national energy security imposes an obligation to diversify the energy generation sources. Additionally we must remember to meet Polish obligations concerning the emission reduction of gaseous pollution. The long-range time horizon of the model obliges to take into consideration all possible, that does not necessarily mean the at present available ones, generation technologies and methods to cover the energy demand. The authors here have mainly in mind the taking into consideration renewable energy sources, nuclear fuel and coal gasification technology. These conditionings are favouring the legitimacy of computer programs application as the tool for prognozing, simulating or optimizing the condition of the energy sector. The basic fuel for electric energy and heat generation will be, until the year 2030, the hard coal – after 2015 the natural gas consumption will be reduced. Observed is a visible, systematic increase of biomass and biogas utilization, which share in the year 2030 will amount to almost 15% of all fuels used for electric energy and heat generation. Electric energy production from hydropower and pumped storage plants will be on a steady level for the whole time, as well as from wind power plants. The obtained model results confirm that the MARKAL program structure is based on linear programming. The model has selected, as the priority technologies in the national power system structure, the new thermal power and the CHP plants fired with hard and brown coal and the new biogas CHP stations. These are the technological options ensuring achieving of the lowest cost of the whole power system, allowing at the same time to reach strategic goals in the range of minimum share of electric energy generated from renewables and from highly efficient cogeneration in the electric energy end-use in Poland.
EN
In this paper, the next in a series of publications on the subject, assumptions are presented of a power system development model in terms of electricity generation technology infrastructure in Poland, in the long term perspective until 2060. The model is based on the mathematical structure of the MARKAL optimization package. Among other things developed are a forecast of the fi nal demand for electricity and heat, the current mix of power and electricity generation in Poland, and a forecast of decomissioning in the power and co-generation plants. The study also contains a summary of technical and economic indicators of the generation technologies considered in the model.The author shall not be responsible for any outcome of use of the research results presented herein.
PL
Niniejszy artykuł, będącym kontynuacją cyklu o tej tematyce, przedstawiona założenia modelu rozwoju systemu energetycznego w zakresie struktury technologicznej wytwarzania energii elektrycznej w Polsce, w perspektywie długoterminowej, do 2060 roku. Model ten oparty jest na strukturze matematycznej pakietu optymalizacyjnego MARKAL. Opracowano m.in. prognozę zapotrzebowania finalnego na energię elektryczną i ciepło, aktualną strukturę mocy i produkcji energii elektrycznej w Polsce oraz prognozę wyłączania mocy w istniejących elektrowniach i elektrociepłowniach. Opracowanie zawiera również zestawienie wskaźników techniczno-ekonomicznych technologii energetycznych rozpatrywanych w modelu.
EN
In this paper, which inaugurates a series of papers on this subject, a concept is proposed of a power system development model with regard to the technological structure of electricity generation in Poland, in the long-term time perspective – until 2060. The model is based on the mathematical structure of the MARKAL optimization package. The paper presents a brief description of the tool used in the model research. In addition, the optimization criterion is described and the structure of the Reference Energy System is presented.
PL
Artykuł rozpoczynający cykl artykułów o tej tematyce, prezentuje koncepcję modelu rozwoju systemu energetycznego w zakresie struktury technologicznej wytwarzania energii elektrycznej w Polsce, w horyzoncie długoterminowym – do roku 2060. Model ten oparty jest na strukturze matematycznej pakietu optymalizacyjnego MARKAL. Przedstawiono krótką charakterystykę narzędzia zastosowanego w badaniach modelowych. Ponadto opisano kryterium optymalizacji i zaprezentowano strukturę Energetycznego Systemu Odniesienia (ang. Reference Energy System).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.