Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  M5P
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Precise and reliable runoff forecasting is crucial for water resources planning and management. The present study was conducted to test the applicability of different data-driven techniques including artificial neural networks (ANN), support vector machine (SVM), random forest (RF) and M5P models for runoff forecasting for the lead time of 1 day and 2 days in the Koyna River basin, India. The best input variables for the development of the models were selected by applying the Gamma test (GT). Two different scenarios were considered to select the input variables for 2 days ahead runoff forecasting. In the first scenario, the output of 1 day ahead runoff (t+1) was not used as an input while it was also used as an input along with other input variables for the development of the models in the second scenario. For 2 days ahead runoff forecasting, the models developed by adopting the second scenario performed more accurately than that of the first scenario. The RF model performed the best for 1 day ahead runoff forecasting with root mean square error (RMSE), coefficient of efficiency (CE), correlation coefficient (r) and coefficient of determination (R2 ) values of 168.94 m3 /s, 0.67, 0.84 and 0.704, respectively, during the test period. For 2 days ahead runoff forecasting, RF and ANN models performed the best in the first and second scenario, respectively. In 2 days ahead runoff forecasting, RMSE, CE, r and R2 values were observed to be 169.72 m3 /s, 0.67, 0.84, 0.7023 and 148.55 m3 /s, 0.74, 0.87, 0.76 in the first and second scenarios, respectively, during the test period. Finally, the results revealed that the addition of 1 day ahead runoff forecast increased the forecast accuracy of 2 days ahead runoff forecasts. In addition, the dependability of the various models was determined using the uncertainty analysis.
EN
Purpose: Knowledge of sediment load carried by any river is essential for designing and planning of hydro power and irrigation projects. So the aim of this study is to develop and evaluating the best soft-computing-based model with M5P and Random Forest regressionbased techniques for computation of sediment using datasets of daily discharge, daily gauge and sediment load at the Champua gauging site of the Upper Baitarani river basin of India. Design/methodology/approach: Last few decades, the soft computing techniques based models have been successfully used in water resources modelling and estimation. In this study, the potential of tree based models are examined by developing and comparing sediment load prediction models, based on M5P tree and Random forest regression (RF). Several M5P and RF based models have been applied to a gauging site of the Baitarani River at Odisha, India. To evaluate the performance of the selected M5P and RF-based models, three most popular statistical parameters are selected such as coefficient of correlation, root mean square error and mean absolute error. Findings: A comparison of the results suggested that RF-based model could be applied successfully for the prediction of sediment load concentration with a relatively higher magnitude of prediction accuracy. In RF-based models Qt, Q(t-1), Q(t-2), S(t-1), S(t-2), Ht and H(t-1) combination based M10 model work superior than other combination based models. Another major outcome of this investigation is Qt, Q(t-1) and S(t-1) based model M4 works better than other input combination based models using M5P technique. The optimum input combination is Qt, Q(t-1) and S(t-1) for the prediction of sediment load concentration of the Baitarani River at Odisha, India. Research limitations/implications: The developed models were tested for Baitarani River at Odisha, India.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.