M-estimators are widely used in active noise control (ANC) systems in order to update the adaptive FIR filter taps. ANC systems reduce the noise level by generating anti-noise signals. Up to now, the evaluation of M-estimators capabilities has shown that there exists a need for further improvements in this area. In this paper, a new improved M-estimator is proposed. The sensitivity of the proposed algorithm to the variations of its constant parameter is checked in feedforward control. The effectiveness of the algorithm in both types is proved by comparing it with previous studies. Simulation results show the steady performance and fast initial convergence of the proposed algorithm.
In reliability, quality control and risk analysis, fuzzy methodologies are more and more involved and inevitably introduced difficulties in seeking fuzzy functional relationship between factors. In this paper, we propose a scalar variable formation of fuzzy regression model based on the credibility measure theoretical foundation. It is expecting our scalar variable treatments on fuzzy regression models will greatly simplify the efforts to seeking fuzzy functional relationship between fuzzy factors. An M-estimator for the regression coefficients is obtained and accordingly the properties and the variance-covariance for the coefficient M-estimators are also investigated in terms of weighted least-squares arguments. Finally, we explore the asymptotic membership function for the coefficient M-estimators.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.