For h : (0,∞) → R, the function h* (t) := th( 1/t ) is called (*)-conjugate to h. This conjugacy is related to the Hölder and Minkowski inequalities. Several properties of (*)-conjugacy are proved. If φ and φ* are bijections of (0,∞) then [formula]. Under some natural rate of growth conditions at 0 and ∞, if φ is increasing, convex, geometrically convex, then [formula] has the same properties. We show that the Young conjugate functions do not have this property. For a measure space (Ω,Σ,μ) denote by S = (Ω,Σ,μ) the space of all μ-integrable simple functions x : Ω → R, Given a bijection φ : (0,∞) → (0,∞) define [formula] by [formula] where Ω(x) is the support of x. Applying some properties of the (*) operation, we prove that if ƒ xy ≤ Pφ(x)Pψ (y) where [formula] and [formula] are conjugate, then φ and ψ are conjugate power functions. The existence of nonpower bijections φ and ψ with conjugate inverse functions [formula] such that Pφ and Pψ are subadditive and subhomogeneous is considered.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.