Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Lower Palaeozoic
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Three-dimensional, structural and parametric numerical modelling was applied to unravel the unconventional hydrocarbon potential of a W-dipping, Lower Palaeozoic mudrock succession, which subcrops for some 700 km in the Baltic, Podlasie and Lublin basins across the SW margin of East European Craton in Poland. Input data comprised structural and thickness maps of Ordovician and Silurian strata and the results of thermal maturity (mean vitrinite-equivalent reflectance, % Ro) and total organic carbon (TOC, % wt.) modelling. A new, spatial interpretation of vitrinite-reflectance variability indicates that the regional, W-increasing thermal maturity pattern breaks into a series of domains, bounded by abrupt maturity variations. In total, 14 tectono-thermal domains were recognised and their boundaries traced to known and inferred faults, mostly of NW‒SE and NE‒SW orientations. On the basis of a combination of thermal maturity and total organic carbon levels (0.6% > Ro<2.4%, and TOC >1.5% wt.), good-quality, unconventional reservoirs can be expected in the Sasino Formation (Caradoc) and Jantar Formation (early Llandovery) in the central and western Baltic Basin. The Jantar Formation also is likely to be prospective in the western Podlasie Basin. Marginal-quality reservoirs may occur in the Sasino and Jantar formations within the Podlasie and Lublin basins and in the Pasłęk Formation (late Llandovery) across all basins. Poor- to moderate-quality, unconventional reservoirs could be present in the Pelplin Formation (Wenlock) in the Lublin and southern Podlasie basins. In spite of a considerable hydrocarbon loss during multiphase basin inversion, the Ordovician and Silurian mudrocks still contain huge quantities of dispersed gas. Successful exploitation of it would require the adoption of advanced fracking methods.Lower Palaeozoic, shale gas, shale oil, Baltic Basin, Lublin-Podlasie Basin, total organic carbon, thermal maturity, structural-parametric model.
EN
In this work, 1-D numerical modelling of petroleum generation and expulsion processes in the Upper Ordovician and Lower Silurian source rocks was carried out in over sixty wells along the SW margin of the East European Craton (EEC) in Poland. Lower Palaeozoic sediments were subjected to rapid burial in the Palaeozoic and then were uplifted in several phases, but with the predominance of the late Variscan tectonic inversion. The thermal maturity of organic matter in the Lower Palaeozoic strata indicates the advancement of the generation processes from the phase of low-temperature thermogenic processes in the NE part of the Baltic and Podlasie-Lublin basins to the overmature stage along the zone adjacent to the Teisseyre-Tornquist Zone (TTZ). The results of modelling of generation and expulsion show that these processes took place mainly in the Devonian and Carboniferous periods and in the westernmost part (along the TTZ), even in the latest Silurian. The hydrocarbon expulsion took place with a small - delay after generation. During the Mesozoic and Cainozoic, generation processes practically were not resumed or intensified. Nevertheless, it was found that zones with an increased shale gas potential can occur only in a relatively narrow belt on the SW slope of the EEC, parallel to the edge of the TTZ. The most promising seem to be Caradocian, Llandovery and the Wenlock between the Lębork IG-1 and Kościerzyna IG-1 wells in the Baltic Basin, and the Wenlock source rocks in the Podlasie-Lublin Basin between the Okuniew IG-1, Łopiennik IG-1 and Narol IG-1 wells. Most of the hydrocarbons were subjected to expulsion and possible migration. As a result, there was a large dispersion of the hydrocarbons generated. The chance of preservation of these hydrocarbons in the source rocks is small.
EN
The paper presents a multi-phase and multi-stage methodology of 3D structural-parametric modelling and mapping that has been applied during implementation of the GAZGEOLMOD project. The core of the applied processing workflows is a 3D geological model constructed in Petrel, which functions as a spatial database for all kinds of geological models. The first phase of the workflow comprised an extended process of database project building that was very intensive at the beginning of the project and continued to its end. The second phase of processing consisted of a complex process of mapping and structural modelling that is performed in 8 stages, allowing for iterative improvements of model resolution. During the realization of stages 1 to 7, processing was run independently for the Baltic (BB), Podlasie (PB) and Lublin Basins (LB). The workflow included the following stages: (1) unification and digitization of published and on file analogue and digital, structural maps; (2) preliminary reinterpretation, including adjustment to stratigraphy data acquired from archives; (3) adjusting the maps to the primary results of seismic interpretation, mainly from archival data; (4) digitization and gridding of pre-existing palaeothickness maps and updates of them with data from boreholes completed after 2009; the reinterpretation of the palaeothickness maps into contemporary thickness maps; (5) elaboration of the primary structural 3D models for the three basins; (6) increasing of the stratigraphic resolution of models up to the rank of the geological epoch for Ordovician–Silurian strata; (7) conversion of basin-scale structural models into a 2D grid, and their merging into platform-scale surfaces, resulting in 45 structural and thickness maps; finally, they were adjusted to the results of seismic interpretation and sedimentological studies, obtained in the project; and (8) completion of the resulting structural models for each of the basins and for the entire Polish part of the East European Craton in several different versions. In the third phase of processing, parametric models of vitrinite reflectance (Ro) and Total Organic Carbon (TOC) were estimated.
EN
A set of geological maps and geological cross-sections was prepared to document the geological setting of sedimentary basins developed on the western slope of the EEC and adjacent areas to the west. On the basis of these data and literature on the subject, the evolution of the sedimentary basins in the study area was reviewed, with special emphasis on the Ediacaran–Lower Palaeozoic basin. The basin originated during late Ediacaran rifting, related to the latest stages of breakup of the Precambrian super-continent Rodinia/Pannotia, associated with large-scale igneous activity. The rifting ultimately led to the formation of the Tornquist Ocean and subsequently, during the latest Ediacaran to Middle Ordovician, the SW margin of the newly formed Baltica became a passive continental margin. The upper Cambrian depocentre in the Biłgoraj-Narol Zone and the Łysogóry Block tentatively is interpreted as a small, narrow foredeep, related to the docking of the Małopolska Block to the western margin of Baltica. From the Late Ordovician through the Silurian, a gradual change to a collisional tectonic setting is observed across the entire SW margin of Baltica, as well as in the zones adjacent to it from the west, which together became the site of development of the extensive Caledonian foredeep basin, related to the convergence and collision of Avalonia and Baltica. The oblique character of the collision resulted in a prominent diachronism in the development of the foredeep basin. This refers to the initiation of basin subsidence, the starved basin phase, the main phase of rapid subsidence and supply of detritus from the west, and the termination of basin development. The Early Mississippian (Bretonian) phase of uplift and erosion and, to a lesser degree, also the Late Pennsylvanian one significantly affected the structure of the western EEC. During the Mississippian, extensive magmatic activity took place at the SW margin of East European Craton, in the region referred to here as the Baltic-Lublin Igneous Province.
EN
In the Cambrian, the Lublin Basin was a shallow-water area, located on the western edge of the Baltica palaeocontinent. The Cambrian sedimentary sequence, forming the lower part of the sedimentary cover of the North European Platform, is lithologically diversified and reflects dynamic variation in depositional environment. This paper presents the distribution of palaeofacies and sedimentary environments in the early Lublin Basin, including changes in their lateral extent during its evolution in the Cambrian. In order to evaluate the facies architecture of the Lublin Basin, a sedimentological analysis was carried out. On the basis of the detailed logging of drill cores, lithofacies made up of conglomerates, sandstones, mudstones and heterolithic deposits were distinguished; 16 lower-rank sublithofacies were identified. Their specific assemblages are indicative of shelf-type lithofacies associations, i.e. (1) tidal flat with muddy, mixed and sandy tidal plain sublithofacies including subtidal channels; (2) barrier-lagoon; (3) shoreface with lower, middle and upper shoreface subassociations; and (4) offshore with upper and lower offshore subassociations, including sandy tidal ridges. During the early Cambrian, the lateral variability and environmental succession indicate a transgressive, long-term trend and the migration of a lagoonal environment across wide tidal plains and the shoreface up to an offshore environment. The Lublin Basin reached its greatest lateral extent and maximum depth in the upper lower Cambrian. Next, an opposite trend began and during the middle Cambrian a regression cycle is recorded in successive changes in sedimentary environments that reflect a progressive shallowing. Multiple changes in adjacent environments indicate repeated and cyclical, lower-rank ingressions.
EN
Burial history, thermal maturity and timing of hydrocarbon generation were modelled for the Ordovician and Silurian source rocks in the basement of the Carpathian Foredeep. 1-D modelling was carried out for wells located in the area between Kraków and Rzeszów cities (SE Poland). The following wells were modelled: Będzienica 2, Hermanowa 1, Nawsie 1, Nosówka 2 and 12, Pilzno 40, and Zawada 8K. The Ordovician and Silurian source rocks, containing oil-prone Type-II kerogen, are generally immature showing less than 0.5% reflectance of vitrinite-like macerals (Ro), in most of the Kraków–Rzeszów area and only in the eastern part the organic matter is early mature, reaching 0.7% equivalent Ro. The highest thermal maturity is found in the eastern part of the study area, near Rzeszów city, where the Lower Palaeozoic strata are buried to the greatest depth. Maturity modelling shows that the source rocks reached the initial phase of the “oil window” only in the eastern part of the area, whereas they are immature in the larger, western portion of the area. In addition, modelling indicates that the onset of petroleum generation started in the late Miocene, after the Outer Carpathian overthrust phase. The generation processes in the eastern part of the analysed area reached the main and late generation phase. The generated hydrocarbons were mostly expelled from the source rocks. In the western part of the study area the generation process has not been initialized.
EN
Two main thrust slices in the Camdag area (NW Anatolia), were informally named the Southern and Northern Camdag units. New micropaleontological and palynological data about the Ordovician, Silurian and Devonian in the Northern Camdag have allowed a better understanding of the Early Palaeozoic evolution of this critical area between the Istanbul Terrane in the west and the Zonguldak Terrane in the east. The Middle Ordovician age obtained from the conodont-bearing limestone band within the Aydos Formation in this study is in agreement with the data from the Zonguldag Terrane. Acritarch evidence suggests a Late Ordovician age of the upper part of Aydos Formation. This paper concerns the Northern unit. Three members are distinguished in the Findikli Formation and dated biostratigraphically. The lower member (Black Shale Member) of the Findikli Formation is absent from the Kabalak Dere section, but was assigned elsewhere to the Llandovery on the basis of graptolites. The middle member (Shale-Siltstone Member) is dated as Wenlock and Ludlow on the basis of acritarchs. The upper member (Shale-Limestones Member) spans a continuous upper Silurian - Lower Devonian succession. The overlaying Ferizli Formation is assigned to the Middle Devonian on the basis of conodonts. The new stratigraphic data indicate that the Southern Camdag unit corresponds to the Istanbul Terrane and the Northern Camdag unit to the Zonguldak Terrane. The tectonic contact between the Northern and the Southern units is a steep south-verging thrust-fault.
PL
Dla próbki z utworów niższego dolnego kambru, dostarczanych do basenu bałtyckiego z zachodu (otw. Słupsk IG 1, głęb. 4491 m), wyniki punktowych datowań U/Pb SHRIMP ziaren detrytycznych cyrkonów grupują się w zakresie około (1250-) 1350 do około 1800 mln lat, typowym dla podłoża zachodniej Fennoskandii. Pozwala to sugerować, że na początku kambru kraton wschodnioeuropejski (Baltika) sięgał dalej na zachód niż obecna linia Teisseyre’a-Tornquista. Wiek K/Ar otrzymany dla muskowitów z tej samej próbki wynosi 674,2 ±25,4 mln lat, co można wiązać z metamorfizmem zachodzącym na zachodnim skłonie Baltiki, związanym z wczesną fazą ryftowania w czasie rozpadu prekambryjskiego superkontynentu Rodinii/Pannotii. Spektrum wyników punktowych datowań U/Pb ziaren detrytycznych cyrkonów dla próbek z karadockich piaskowców strefy Koszalin-Chojnice (otw. Nowa Karczma 1, głęb. 2761,7 m) oraz ludlowskich piaskowców basenu bałtyckiego (otw. Słupsk IG 1, głęb. 3543,5 m), deponowanych z zachodu, spoza obecnej linii Teisseyre’a-Tornquista, jest zbliżone. Dominują w nich ziarna o wieku wskazującym na pochodzenie z erozji obszaru nawiązującego budową do zachodniej części kratonu wschodnioeuropejskiego. Występują wśród nich grupy ziaren wiekowo odpowiadających orogenezie swekofeńskiej (1756-2050 mln lat), poorogenicznym granitom typu rapakiwi (1485-1510 mln lat) oraz orogenezie swekonorweskiej/grenwilskiej zachodniej Fennoskandii (974-1227 mln lat). Ponadto próbki te zawierają ziarna cyrkonów datowane na 739-805 mln lat oraz 854-856 mln lat. Ziarna o wieku w zakresie 559-623 mln lat mogą pochodzić z erozji podłoża perygondwańskich terranów, prawdopodobnie Awalonii. Stwierdzono także ziarna cyrkonów o wieku U/Pb odpowiadającym zdarzeniom kaledońskim (442-495 mln lat). Wyniki datowań K/Ar detrytycznych muskowitów dla pięciu próbek z osadów sylurskich basenu bałtyckiego oraz jednej z rowu Oslo, dostarczanych z obszaru źródłowego położonego na zachód od obecnej linii Teisseyre’a-Tornquista i Sorgenfreia-Tornquista, mieszczą się we względnie wąskim zakresie wiekowym, odpowiadającym ordowikowi i wczesnemu sylurowi (od 441,7 ±16,9 do 477,7 ±18,2 mln lat). Dla jednej próbki uzyskano natomiast wiek K/Ar łyszczyków wynoszący 546,8 ±20,9 mln lat, odpowiadający późnemu ediakarowi-wczesnemu kambrowi. Basen, w którym były deponowane utwory strefy Koszalin-Chojnice, oraz basen bałtycki były zasilane od zachodu detrytusem pochodzącym z erozji kaledońskiej strefy kolizji, w której zachodził orogeniczny metamorfizm niskiego stopnia, a w skład której wchodziły bloki tektoniczne o odmiennej proweniencji. Oprócz zmetamorfizowanych osadów kaledońskiej pryzmy akrecyjnej w strefę kolizji były zaangażowane: kaledoński, subdukcyjny łuk wyspowy, zachodni brzeg kratonu wschodnioeuropejskiego oraz perygondwańskie terrany i enklawy skorupy o kadomskiej konsolidacji. Strefa Koszalin-Chojnice w ordowickiej paleogeografii była odległa od strefy Rugii.
EN
Sediments supplied during the earlymost Cambrian to the Baltic Basin from the west are characterized by the presence of detrital zircons characterized by U/Pb SHRIMP ages in a range of (1250-) 1350 to 1800 Ma, as well as K/Ar age of detrital muscovite 674.2 ± 25.4 Ma. Detrital zircons supplied to the Koszalin-Chojnice zone and Baltic Basin during the Late Ordovician and Late Silurian, respectively, have U/Pb SHRIMP characteristics similar to each other (clusters of ages: 1756-2050 Ma, 1485-1510 Ma, 974-1227 Ma, 739-805 Ma, 854-856 Ma, 559-623 Ma, 442-495 Ma). A relatively narrow range of K/Ar ages was obtained for five samples from detrital muscovites supplied to the Baltic Basin from the west during the Late Silurian (441.7 ± 16.9 to 477.7 ± 18.2 Ma). One sample revealed K/Ar age of 546.8 ± 20.9 Ma. The Baltic Basin and the Koszalin-Chojnice zone were supplied with detritus from the west by a Caledonian collision zone affected by syncollisional low grade metamorphism and composed of tectonic units of different provenance: a volcanic island arc related to Caledonian subduction, a western margin of the East European Craton and the peri-Gondwanian terranes and enclaves of the Cadomian consolidation crust.
PL
Dla lubelsko-podlaskiego, górnoneoproterozoiczno-dolnopaleozoicznego basenu sedymentacyjnego przeprowadzono analizę subsydencji (backstripping) oraz analizę facjalną jego osadowego wypełnienia. Wydzielono cztery główne, częściowo współwystępujące, etapy tektonicznej ewolucji basenu, o odmiennych mechanizmach subsydencji: (1) późnoneoproterozoiczny ryft (faza subsydencji synryftowej w reżimie ekstensyjnym), (2) przejście od fazy syn- do postryftowej na przełomie późnego neoproterozoiku III i wczesnego kambru, (3) wczesnokambryjsko-środkowoordowicki pasywny brzeg kontynentalny (faza postryftowej subsydencji termicznej) oraz (4) późnoordowicko-późnosylurskie fleksuralne uginanie krawędzi Baltiki. Synryftowe wypełnienie basenu stanowią kontynentalne wylewy bazaltowe oraz kontynentalne zlepieńce i arkozy, obocznie zastępowane przez mułowce. Wykształcenie facjalne tych utworów dopuszcza synsedymentacyjną aktywność ekstensyjnych uskoków. Synryftowe depocentra rozwijały się zarówno wzdłuż obecnej strefy szwu transeuropejskiego, jak i wzdłuż SW przedłużenia aulakogenu Orsza-Wołyń. Efektem tych procesów było powstanie węzła potrójnego, którego porzuconym ramieniem jest druga z powyżej wymienionych stref. Przejście do fazy postryftowej subsydencji termicznej wyznaczają: stopniowo wygasająca subsydencja, równoczesna z morską transgresją, generalnym zmniejszaniem się frakcji materiału klastycznego i obocznym ujednoliceniem facjalnym oraz rozszerzaniem się zasięgu basenu. Przyjęto, że kambryjsko-środkowoordowicki pasywny brzeg kontynentalny był związany z domniemanym basenem (oceanem?) Tornquista, powstałym na SW od Baltiki w efekcie rozpadu super-kontynentu Rodinii. W takim ujęciu obecna pozycja kadomskiego orogenu na blokach małopolskim i górnośląskim w stosunku do kratonu wschodnioeuropejskiego nie jest reprezentatywna dla neoproterozoiku III i kambru. Ze względu na brak niepodważalnych dowodów na obecność synryftowych deformacji ekstensyjnych uznano, iż możliwa jest interpretacja wyników backstrippingu alternatywna względem modelu litosferycznej, basenotwórczej ekstensji. W alternatywnym modelu dla późnoneoproterozoiczno-środkowoordowickiego okresu rozwoju basenu jako przeważający mechanizm subsydencji basenu przyjęto termiczne studzenie litosfery, będące następstwem jej pasywnego przegrzania w czasie aktywności wulkanicznej w neoproterozoiku III. Model ten, choć dopuszczalny dla basenu lubelsko-podlaskiego, nie tłumaczy jednak rozwoju górnoneoproterozoicznych, kambryjskich i ordowickich basenów SW skłonu kratonu wschodnioeuropejskiego, genetycznie powiązanych z basenem tu omawianym. Począwszy od późnego ordowiku obserwowany jest systematyczny wzrost tempa subsydencji w czasie, które osiąga maksymalne wartości w późnym sylurze. Dla tego przedziału czasu obserwowany jest również silny wzrost subsydencji z NE ku SW, tj. ku skłonowi kratonu wschodnioeuropejskiego. Generalny rozwój subsydencji omawianego basenu w sylurze jest charakterystyczny dla procesu fleksuralnego uginania litosfery, w tym wypadku SW krawędzi Baltiki.
EN
For the Neoproterozoic to Lower Palaeozoic Lublin-Podlasie sedimentary basin 1-D subsidence analysis was conducted by means ofbackstripping. This was performed for 14 boreholes, representative for the basin, and additionally was compared with the results of similar analysis applied further to the NW, i.e. for the Baltic Basin. To constraint tectonic model for the basin the results of backstripping were related to facies architecture of the basin-fill. Four partially overlapping main tectonic phases of the basin development were identified: (I) the late Neoproterozoic syn-rift, extension-elated subsidence, (2) transition from synrift to postrift phase at the latemost Neoproterozoic III to earlymost Early Cambrian, (3) post-rift thermal subsidence of the passive continental margin during the late Early Cambrian to Middle Ordovician and (4) Late Ordovician to late Silurian flexural bending. The rifting phase was initiated with deposition of continental coarse-grained sediments and emplacement of continental basalt. Subsequently the syn-rift basin was filled with continental conglomerates and arkoses, laterally replaced by mudstones, with facies development possibly controlled by extensional fault block activity. This passed up-section into shallow marine claystones and mudstones. Development of syn-rift depocentres was roughly coeval along Peri-Tornquist zone and SW prolongation ofOrsha-Volhyn zone, leading to development of triple-point SW of analysed area, with the second of the above zones being an abounded arm. Passage to post-rift thermal subsidence of the passive continental margin is indicated by subsequently ceasing subsidence, coeval with marine transgression, fining of clastic sediments and relative facies unification, as well as expansion of depocentres. The passive margin is related here to a suspected Tornquist basin (ocean?), developed to the SW of Baltica as a result of break-up of the super-continent Rodinia. This requires an assumption, that recent position of a Cadomian orogen, recognised on Małopolska and Brunovistulicum, with respect to Baltica is not representative for the Neoproterozoic III and Cambrian. Lack of definite evidences for syn-rift extensional deformations leads to an alternative interpretation of the backstripping results. Instead oflithospheric, active extension, leading to development of the sedimentary basin, in the alternative model it was assumed that the Neoproterozoic to Middle Ordovician evolution of the Lublin-Podlasie basin was exclusively a result of thermal sag, related to cooling of litho sphere. This would be a consequence of passive heating of the system due to volcanic activity in the Neoproterozoic III. This alternative model, even if suitable for the Lublin-Podlasie basin, is not capable to explain the upper Neoproterozoic, Cambrian and Ordovician development of sedimentary basins at the SW slope of Baltica, which are genetically related to the analysed area. Any compromise between cooling after passive heating and cooling after active lithospheric extension, with different proportions between the both, is possible. Since the Late Ordovician gradual increase in subsidence rate in time is observed, which reaches maximum in the late Silurian (Pridoli). Overall pattern of the Silurian subsidence, both spatial and 1-D, is typical for a mechanism of flexural bending oflithosphere. A common development of Caledonian foredeep basins along e.g. some of Baltica and Eastern and Western Avalonia margins, coeval with Silurian flexural bending, enhances discussing such model for Lublin-Podlasie basin. Nevertheless, comparison of development of the analysed area with Holly Cross Mountains one during the Silurian does not support a simple foredeep model.
EN
Analysis of palaeothickness maps of the uppermost Vendian -Lower Cambrian and Middle Cambrian of the Baltic Syneclise has shown that thickness variability of those sediments was controlled by subsidence differentiation and palaeorelief of the buried crystalline basement. During the Late Cambrian-Tremadoc uplifting movements dominated with the exception of the westernmost part of the Baltic Syneclise which was undergoing subsidence. During the Ordovician the Jelgava Depression was the most prominent palaeotectonic element. It embraced the northeastern part of the analysed area. Since the Early Silurian times a distinct subsidence increase had taken place. During the Early Silurian this phenomenon was restricted to the peripheral part of the Pre-Vendian Platform. Later, on in the Late Silurian times this process embraced the whole analysed area.
PL
W ramach współpracy międzynarodowej geologów polskich, litewskich, łotewskich i rosyjskich opracowano serię map paleomiąższościowych najmłodszego wendu-starszego paleozoiku syneklizy bałtyckiej. Analiza tych map pozwala na prześledzenie ewolucji paleotektonicznej obszaru w badanym okresie. Paleomiąższości najwyższego wendu-kambru dolnego ilustruje fig. 2. Dolnokambryjski zalew morski wkroczył na dość zróżnicowane morfologicznie podłoże. Na obszarze Polski najwybitniejszą paleostrukturą jest tzw. wyniesienie Zaręb w części centralnej całkowicie pozbawione osadów kambru dolnego. Na obszarze Obwodu Kaliningradzkiego i Litwy rejestrowane są wąskie grzędy rozdzielone obniżeniami, których pochodzenie związane jest ze zróżnicowaną morfologią fundamentu krystalicznego. W kambrze środkowym zmienność miąższościowa jest silniejsza niż w kambrze dolnym. Na obszarze Polski najbardziej zróżnicowane miąższości obserwuje się na wschód od Wisły. W Obwodzie Kaliningradzkim i na Litwie podstawowe trendy zmian miąższościowych w kambrze środkowym są podobne jak w kambrze dolnym. Kolejny etap rozwoju paleotektonicznego reprezentowany jest przez kambr górny-tremadok dolny. Ciągła pokrywa osadów tego wieku zachowana jest jedynie w zachodniej części badanego obszaru, gdzie wyraźnie zarysowane jest paleotektoniczne obniżenie Ławicy Słupskiej o kierunku W-E. Na pozostałym obszarze osady tego wieku zachowane są jedynie lokalnie w postaci płatów erozyjnych i brak jest tam wystarczających podstaw przeprowadzenia rejonizacji paleotektonicznej. Kolejna etapy rozwoju paleotektonicznego to ordowik dolny i ordownik środkowy-górny. Analiza map paleomiąższościowych wykazuje iż najwybitniejszym elementem paleostrukturalnym było wtedy rozległe obniżenie jełgawskie obejmujące większość obszaru Łotwy i część Litwy oraz przyległy akwen Bałtyku. Natomiast strefa wyraźnie zredukowanych miąższości w brzeżnej części platformy prewendyjskiej w rejonie Kościerzyny nie stanowiła prawdopodobnie wyniesienia, lecz obszar, w którym subsydencja nie była kompensowana przez sedymentację. W etapie dolnosylurskim większość istniejących wcześniej. lokalnych elementów paleostrukturalnych uległa rozformowaniu lub znacznej modyfikacji. W zachodniej części obszaru wzdłuż krawędzi platformy prewendyjskiej formuje się wyraźna skarpa strukturalna Bornholmu-Słupska o wysokim gradiencie zmian miąższościowych. W tym też rejonie w sylurze górnym została zarejestrowana najsilniejsza subsydeneja, a zrekonstruowane paleomiąższości osadów osiągają 2500-3000 m. Jak się przypuszcza (R. Dadlez, 1994) u schyłku syluru, w pridoli, nastąpiła pewna przebudowa planu strukturalnego polegająca na przesunięciu centrum subsydencji ze skrajnej części platformy w głąb kratonu w kierunku wschodnim w rejon Zatoki Gdańskiej.
EN
The clayey-muddy complex of the Ordovician and Silurian age in the Pomeranian Caledonides belt as well as the Cambrian, Ordovician and Silurian rocks at its foreland (the East European Craton) contain the same genetical type of the organic matter dominated by the syngenetic sapropelic material (oil-prone). The intensity and character of the thermal alterations in both stable organic matter mobile components show distinct analogies despite the different tectonic involvement of both regions. The reflectivity index of the vitrinite-like minerals shows an increase with a burial depth of the successive members of the Lower Palaeozoic. The local increase in thermal alteration of the organic matter is related to the zones of the increased tectonic activity. Assuming that the maximum burial depth of the studied sediments corresponds to their present depth, it can be concluded that the thermal palaeogradient for the Early Palaeozoic in the Pomeranian region was higher than the present-day one. The range of maximum palaeotemperatures which influenced the Lower Palaeozoic complex is very wide ranging from about 70 to 200°C in the Caledonian zone. The analysed deposits do not show a good quality as potential source rocks for hydrocarbon generation. Their low generation potential is probably caused by an earlier generation of a part of hydrocarbons.
PL
Badania petrograficzne i geochemiczne wykonane zostały na materii organicznej rozproszonej w utworach starszego paleozoiku po obu stronach strefy tektonicznej Teisseyre'a-Tornquista. Objęły one swym zasięgiem osady ordowiku i syluru pomorskiej części pasma kaledonidów oraz kambru, ordowiku i syluru na ich przedpolu, na obszarze kratonu wschodnioeuropejskiego. Mimo że materia organiczna jest czułym wskaźnikiem zmian fizykochemicznych, szczególnie termicznych, zachodzących w osadzie w czasie jego dia-i katagenezy, nie stwierdzono wyraźnych różnic w charakterze jej przemian na obu obszarach. Świadczy to o podobnym wpływie procesów tektonicznych związanych zarówno z kaledonidami, jak i młodszymi ruchami diastroficznymi na brzeżną strefę kaledonidów pomorskich oraz na ich przedpole na obszarze kratonu wschodnioeuropejskiego. Typ genetyczny materii organicznej zawartej w skałach starszego paleozoiku na całym obszarze badań jest reprezentowany przez syngenetyczny materiał sapropelowy oi!-prone. Zawartość materiału humusowego, głównie redeponowanego, wzrasta dopiero w osadach sylurskich. W całym profilu badanych osadów występują epigenetyczne węglowodory impregnujące skały, wypełniające przestrzenie porowe lub mikroszczeliny spękań. W kompleksie utworów starszego paleozoiku materia organiczna stała oraz związki labilne występują w zmiennej ilości, przy maksymalnej koncentracji nie przekraczającej 2,6% TOC oraz 0,33% bituminów. Poziomy macierzyste o zawartości powyżej 0,5% C(org). występują najliczniej na obszarze kratonu wschodnioeuropejskiego w iłowcach środkowego kambru, górnego ordowiku oraz lokalnie w całym profilu syluru. W brzeżnej strefie kaledonidów pomorskich jedynie pojedyncze poziomy łupków karadoku z otworu Jamno IG 2 oraz wenloku z otworu Klosnowo IG 1 wykazują cechy słabych skał macierzystych dla generacji ropy. Potencjał generacyjny poziomów potencjalnie macierzystych jest najprawdopodobniej obniżony przez wcześniejsze wygenerowanie części węglowodorów. Określone na podstawie wartości wskaźnika Ro stadia generacji węglowodorów, w rejonie położonym na południowy zachód od strefy Teisseyre'a-Tornquista (kaledonidy pomorskie), zmieniają się od wczesnej fazy generacji ropy po późną fazę generacji gazów (0,63-2,73% Ro), wskazując na paleotemperatury w zakresie 70-200°C. Na północny wschód od strefy T-T (kraton wschodnioeuropejski) stopień dojrzałości materii organicznej odpowiada głównej fazie generacji ropy po fazę generacji gazów (0,82-2,3% Ro), przy maksymalnych paleotemperaturach oddziałujących na osady kambru -syluru, rzędu 80-190°C. Stopień dojrzałości termicznej syngenetycznych bituminitów oraz macerałów witrynitopodobnych wzrasta generalnie z głębokością pogrążenia osadów. Wydaje się, iż najsilniejszy wpływ na charakter przemian materii organicznej miały warunki termiczne związane z maksymalnym pogrążeniem oraz wielkością paleogradientu termicznego. Lokalne anomalie termiczne związane są ze strefami tektonicznymi oraz działalnością wulkaniczną.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.