Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Littorina Sea
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents the results of diatom studies from three cores taken from the Arkona Basin. The main stages of the Baltic Sea evolution in the Holocene – Ancylus Lake, Mastogloia Sea, Littorina Sea, and Post-Littorina Sea – were identified in diatom assemblages. The transition stage between Ancylus Lake and Littorina Sea, called Mastogloia Sea, was not such a long period as in the Mecklenburg Bay but was essential in the evolution of the Baltic Sea. The most pronounced feature of this period was an increase in the number of halophilous species, which reflected the existence of the littoral environment at the onset of this stage. The appearance and development of halophilous species was stimulated by stepwise inflows of saline waters. The composition of diatom assemblages reflected natural eutrophication of the Baltic Sea during the Littorina Sea stage.
EN
Two sediment cores from the Mecklenburg Bay and Arkona Basin were analysed in terms of their geochemical composition and stratigraphy. The main stages of the Baltic Sea evolution – Baltic Ice Lake, Ancylus Lake, and Littorina Sea – were identified in both analysed cores. The most pronounced period was the transition between the Ancylus Lake and the Littorina Sea. The character of the initial stage of the Littorina Sea was clearly defined in the Mecklenburg Bay sediments and is marked by a stepwise increase in loss on ignition and contents of biogenic silica, calcium, magnesium, iron, and strontium. The record of the onset of the Littorina Sea in the Arkona Basin sediments is marked by an abrupt change of the geochemical parameters. The age of the initial Littorina Sea in the Mecklenburg Bay was estimated at about 8200 cal years BP and was probably older than the transgression within the Arkona Basin.
EN
Four sediment cores from the southern part of the Arkona Basin were analyzed in terms of their geochemical composition, age and stratigraphy. The main stages of the Baltic Sea: the Baltic Ice Lake, the Ancylus Lake and the Littorina Sea were identified in all the analyzed cores. The data confirmed the high water fluctuation and significant environmental changes during the Baltic Sea evolution in the Late - Glacial and the Holocene. The signs of the second regression of the Baltic Ice L ake, dated at around 11 000 cal BP, were identified at a depth of 24 m b.s.l. Regression of the Ancylus Lake, dated at 9300 cal BP, was identified at a depth of 23 m b.s.l. The most pronounced period was the transition stage between the Ancylus Lake and th e Littorina Sea. The record of the Littorina Sea onset in the sediments of the Arkona Basin is marked as a sudden increase in loss on ignition, biogenic silica, magnesium, calcium, iron and strontium. The age of the Littorina Sea in the Arkona Basin was es timated as younger than 8200 cal BP.
EN
Lagoon gyttja layers occurring in anomalously high position (up to 2.5 m above the present-day sea level) The transition phase between the Ancylus and Littorina stages of the Baltic Sea is an old controversial topic. With the newest data available we try to reach a compromise between the "dramatic" model, including a sudden and large drainage of the Ancylus Lake, and the idea of a non-existing Ancylus drainage through Denmark. This new model includes a minor, perhaps 5 m, sudden erosion and forced regression slightly before 10,000 cal. yrs BP. This was followed by a 200–300 yr long period when the outlet through Denmark and Great Belt (Dana River) was characterized by a variable fluvial environment creating fluvial, levée and lacustrine deposits. During this period of rapidly rising sea level, we postulate that the gradient between the Ancylus Lake and sea level gradually decreased from some 5 m until sea level had reached the Ancylus and Darss Sill level. After this point in time occasional pulses of marine water could easier enter into the Baltic basin, which is seen as brackish pulses as early as 9800 cal. yrs BP in records from the Bornholm and Gotland basins, but also from Blekinge. It would, however, take another c. 1500 years before the Öresund threshold was flooded by the rising sea level, causing a significant rise in salinity sometime between 8500–8000 cal. yrs BP, and marking the true onset of the Littorina Sea.
5
Content available The Littorina Sea at the Lithuanian Maritime Region
EN
In the recent decade a number of data of different investigations (pollen, diatom, molluscs analysis, lithological investigations, dating by methods of absolute geochronology, etc.) have been collected during the large-scale geological mapping of Lithuanian Maritime region (Lithuanian Coast). The results of investigations confirmed that there were three Littorina Sea transgressions at the Lithuanian Coast: the first manifested approximately in 8500-7800 conventional 14C years BP, the second (maximal) - in 6200-5900 and the third - in 5300-4000 conv. 14C years BP. The Post-Littorina Sea maximum was in about 3600-3400 conv. 14C years BP. The Littorina Sea shoreline displacement curves were carried out. The present-day positions of shorelines of the Littorina Sea as well as other Baltic basins are displaced in different altitudes in separate parts of the Lithuanian Coast due to oscillatory neotectonic movements of Earth crust blocks during Late Glacial and Holocene.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.