Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  LightGBM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Integrating industrial cyber-physical systems (ICPSs) with modern information technologies (5G, artificial intelligence, and big data analytics) has led to the development of industrial intelligence. Still, it has increased the vulnerability of such systems regarding cybersecurity. Traditional network intrusion detection methods for ICPSs are limited in identifying minority attack categories and suffer from high time complexity. To address these issues, this paper proposes a network intrusion detection scheme, which includes an information-theoretic hybrid feature selection method to reduce data dimensionality and the ALLKNN-LightGBM intrusion detection framework. Experimental results on three industrial datasets demonstrate that the proposed method outperforms four mainstream machine learning methods and other advanced intrusion detection techniques regarding accuracy, F-score, and run time complexity.
2
Content available Flight delay prediction based with machine learning
EN
Background: The delay of a planned flight causes many undesirable situations such as cost, customer satisfaction, environmental pollution. There is only one way to prevent these problems before they occur, and that is to know which flights will be delayed. The aim of this study is to predict delayed flights. For this, the use of machine learning techniques, which have become widespread with the development of computer capacities and data storage systems, is preferred. Methods: Estimations are made with three up-to-date techniques XGBoost, LightGBM, and CatBoost techniques based on Gradient Boosting from machine learning techniques. The bayesian technique is used for hyper-parameter settings. In addition, the Synthetic Minority Over-Sampling Technique (SMOTE) technique is also used, as the majority of flights are on time and delayed flights, which constitute a minority class, may adversely affect the results. The results are analyzed and shared with and without SMOTE. Results: As a consequence of the application, which was run on a data set containing all of an international airline's flights [18148 flights] for a year, it was discovered that flights may be predicted with high accuracy. Conclusions: The application of machine learning techniques to anticipate flight delays is new, but it has a lot of potential. Companies will be able to avert problems before they develop if delays are correctly estimated, which can generate plenty of issues. As a result, concrete advantages such as lower costs and higher customer satisfaction will emerge. Improvements will be made at the most vulnerable place in the aviation business.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.