Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Lie-algebraic methods
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper three algorithms of motion planning for two-input, one-chained nonholonomic systems are presented. The classical Murray-Sastry algorithm is compared with two original algorithms aimed at optimizing energy of controls. Based on the generalized Campbell- Baker-Hausdorff-Dynkin formula applied to the systems, some observations are made concerning the optimal relationship between amplitudes and phases of harmonic controls. The observations help to optimize a selection of controls and to design new algorithms for planning a sub- optimal trajectory between given boundary configurations. It was also shown that for those particular systems the generalized C-B-H-D formula is valid not only locally (as in a typical case) but also globally. Simulations performed on the five-dimensional chain system facilitate distinguishing the proposed algorithms from the Murray-Sastry algorithm and to illustrate their features. Systems in a chained form are important from a practical point of view as they are canonical for a class of systems transformable into this form. The most prominent among them are mobile robots with or without trailers.
EN
In this paper various control representations selected from a family of harmonic controls were examined for the task of locally optimal motion planning of nonholonomic systems. To avoid dependence of results either on a particular system or a current point in a state space, considerations were carried out in a sub-space of a formal Lie algebra associated with a family of controlled systems. Analytical and simulation results are presented for two inputs and three dimensional state space and some hints for higher dimensional state spaces were given. Results of the paper are important for designers of motion planning algorithms not only to preserve controllability of the systems but also to optimize their motion.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.