We study a nonlinear generalized Sawada-Kotera equation of fractional order via the exp(–ϕ(η))–expansion method and Shifted modified Chebyshev Wavelet technique. We obtain abundant exact solutions and approximate solution of the equation. The results of the study shows that the exp(–ϕ(η))–expansion method is very effective and proficient for solving nonlinear fractional partial differential equations. The solitary wave solutions are obtained through the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very expedient for fractional PDEs, and could be extended to other physical problems. Results of the proposed methods show an excellent conformity with the exact solution of the considered problem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.