Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Laser Engineered Net Shaping
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents the results of a research on the behavior of NiCrAlY coating obtained by the LENS method on austenitic stainless steel type 316L under long-term annealing conditions at 1000°C for 25, 100 and 250 hours. The morphology of the NiCrAlY layer as a function of annealing time and temperature was characterized. The chemical composition and distribution of alloying elements were evaluated using scanning microscopy and micro-area chemical composition analysis. It was revealed that NiCrAlY coatings deposited by LENS method are characterized by good metallurgical quality. The long-term annealing of the NiCrAlY coating led to microstructural changes in the form of the disappearance of the original dendritic structure and the formation of a solid solution of nickel with chromium and a small amount of aluminum, as well as chromium α-Cr precipitates and Ni-Y-type phases. The effect of increasing iron concentration in the coating due to diffusion-to-core processes was also found.
EN
Results of the first principle study on a fabrication of FeAl intermetallic based alloy with an addition of nanometric αAl2O3 (n-Al2O3) particles by the LENS method and a subsequent characterization of the as received materials’ structure and properties, are shown in the present work. A series of samples were manufactured using LENS technique while a control of temperature and the size of melted metal pool. The presence of ceramics nanoparticles was not directly confirmed by microscopy observations. Neither aluminum nor oxygen content was not elevated in the material with n-Al2O3 content. Although, indirect methods revealed influence of n-Al2O3 addition on the manufactured elements structure. Analyses of porosity has shown that addition of 2% vol. n-Al2O3 significantly decreases this feature (~1%), as compared to the reference material made of pure FeAl intermetallic alloy (~5%). The addition of n-Al2O3 causes an increase of grain size in Fe40Al intermetallic alloy. An oxidation resistance has been also improved what was associated to the n-Al2O3 addition. Four times lower increase of samples mass was noticed for sample with the n-Al2O3 addition as compared to the pure Fe40Al intermetallic alloy.
3
Content available remote Application of LENS method in Fe40Al + n-Al2O3 composite materials fabrication
EN
The present study examines the impast of nanoceramics on the structure and selected mechanical properties of intermetallic alloys. In order to determine the grain size in the different variants of materials, with LENS fabricated Fe40Al, an equivalent mean diameter was determined. Resistance against oxidation of the material with and without the addition of nanoceramics was also determined. Observations of the microstructure and phasal analysis did not reveal the presence of nanoceramics in the bulk of the material. However, it was found that the addition of nano-oxide ceramics, increases the grain size and a 4-fold increased heat resistance compared to the reference material. For the alloy without the addition of the oxide nanoceramics, a relative deformation of 2% at a lower yield than the 2% composite Fe40Al vol. n-Al2O3 was reported. An attempt to explain the situation it was based on research using the Thermal Imager, which is equipped with a LENS MR-7. It allowed permanent registration of the temperature distribution and weld puddle determining a number of thermodynamic dependences. It additionally drew attention to the fact that during the manufacturing process, differences between the width of the liquid metal mesh for the alloys with and without nanoceramics was observed. It indirectly proves the existence of ceramics on the surface of powder particles at the time of melting the base material, and probably there where an increase in the width of the weld puddle was observed.
PL
W opracowaniu przeanalizowano wpływ nanoceramiki na strukturę i wybrane właściwości mechaniczne stopów na osnowie intermetalicznej fazy Fe40Al wytworzonych techniką LENS. W celu określenia wielkości ziarna w poszczególnych wariantach materiałowych wyznaczono średnią średnicę ekwiwalentną. Określono odporność na utlenianie materiału bez i z dodatkiem nanoceramiki. Obserwacje mikrostruktury oraz analiza fazowa nie ujawniły występowania nanoceramiki w objętości materiału. Stwierdzono jednak, że dodatek nanometrycznej ceramiki tlenkowej wpływa na wzrost wielkości ziaren oraz 4-krotnie podwyższa żaroodporność w stosunku do materiału odniesienia. Dla stopu bez dodatku nanoceramiki tlenkowej odnotowano odkształcenie względne na poziomie 2% przy niższej granicy plastyczności niż kompozyt Fe40Al+2%obj.n-Al2O3. Próbę wyjaśnienia zaistniałej sytuacji podjęto w oparciu o badania z wykorzystaniem Thermal Imagera, w który wyposażony jest LENS MR-7. Umożliwia on permanentną rejestrację rozkładu temperatury jeziorka ciekłego metalu i wyznaczania szeregu zależności termodynamicznych. Uwagę zwrócił fakt, że w trakcie procesu wytwarzania zauważono różnice pomiędzy szerokością oczka ciekłego metalu dla stopów z nanoceramiką i bez. Świadczy on pośrednio o istnieniu ceramiki na powierzchni cząstek proszku w momencie przetapiania materiału bazowego i prawdopodobnie tam, gdzie się ona znajduje, obserwuje się wzrost szerokości jeziorka ciekłego metalu.
4
Content available remote Rapid manufacture of high performance materials by LENS®
EN
Laser Engineered Net Shaping (LENS®) is an additive manufacturing technique for rapidly fabricating, enhancing and repairing metal components directly from CAD data. The process creates fully functional parts, using a wide array of metal powder feedstock including titanium, nickel, cobalt, steel alloys and novel materials such as MMCs and Functionally Gradient Materials. The process is used in medical implant, aerospace, defence and motor sport markets. This paper will review the State of the Art for the technology and present application case studies. Particular focus of the paper will be on material quality and the time, cost and quality benefits obtained in industrial applications.
PL
Laserowe modelowanie siatkowe (LENS®) stanowi dodatkową technikę wytwarzania wykorzystywaną w celu szybkiej produkcji, poprawy jakości i naprawy części metalowych bezpośrednio z danych CAD. Proces ten umożliwia tworzenie w pełni funkcjonalnych części z wykorzystaniem różnego typu podawanych proszków metalowych, w tym tytanu, niklu, kobaltu, stopów stali oraz nowych materiałów, takich jak kompozyty metalowe oraz funkcjonalne materiały gradientowe. Proces ten znajduje zastosowanie w odniesieniu do implantów medycznych, lotnictwa, przemysłu obronnego oraz sportów motoryzacyjnych. Artykuł prezentuje obecny stan wiedzy na temat technologii oraz przykłady jej zastosowania. Szczególna uwaga skoncentrowana jest na właściwościach materiałów, czasie, kosztach oraz jakości uzyskanych w zastosowaniach przemysłowych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.