Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 35

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Landsat
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
In Morocco, irrigated agriculture is still very much linked to the climate and the water retention of dams. With climate change, this country is experiencing recurrent drought, which has led to deficits in water inflow from the rivers to the various dams. The Al Massira dam, the area of study, does not escape this trend. This dam is the only surface water source for the irrigated area of Doukkala. Therefore, special attention must be paid to monitoring this resource at this dam. Thus, the proposed study examined the possibilities offered by spatial remote sensing to improve the current information system. It aims to evaluate this dam’s reservoir by exploiting the data generated by using satellite images. The Landsat satellite images were used to assess the area of this dam by adopting an approach combining spectral indices with thresholding. Then, the existing relationship between the area of the dam lake were examined, determined by spatial remote sensing and its water retention measured in situ. The results obtained revealed a strong correlation between the two parameters. Therefore, a study was conducted to find the best model for predicting the dam’s impoundment based on its lake. The second-degree polynomial model showed a better performance. Given the results obtained, it is recommended to use geospatial methods in the current and prospective monitoring and steering system of water resources.
EN
Land surface temperature (LST) estimation is a crucial topic for many applications related to climate, land cover, and hydrology. In this research, LST estimation and monitoring of the main part of Al-Anbar Governorate in Iraq is presented using Landsat imagery from five years (2005, 2010, 2015, 2016 and 2020). Images of the years 2005 and 2010 were captured by Landsat 5 (TM) and the others were captured by Landsat 8 (OLI/TIRS). The Single Channel Algorithm was applied to retrieve the LST from Landsat 5 and Landsat 8 images. Moreover, the land use/land cover (LULC) maps were developed for the five years using the maximum likelihood classifier. The difference in the LST and normalized difference vegetation index (NDVI) values over this period was observed due to the changes in LULC. Finally, a regression analysis was conducted to model the relationship between the LST and NDVI. The results showed that the highest LST of the study area was recorded in 2016 (min = 21.1°C, max = 53.2°C and mean = 40.8°C). This was attributed to the fact that many people were displaced and had left their agricultural fields. Therefore, thousands of hectares of land which had previously been green land became desertified. This conclusion was supported by comparing the agricultural land areas registered throughout the presented years. The polynomial regression analysis of LST and NDVI revealed a better coefficient of determination (R2) than the linear regression analysis with an average R2 of 0.423.
EN
Shoreline changes have become a serious problem in all coastal areas worldwide. This study aimed to detect shoreline changes and analyze the shoreline change rate caused by abrasion and accretion in the coastal area of Supiori Regency, Indonesia. Landsat 8/9 imagery was used to determine the position of the coastline in 2013 and 2023. The shoreline movement (Net Shoreline Movement) and the shoreline change rate (End Point Rate) were analyzed using the Digital Shoreline Analysis System installed on ArcMap software. The results of this study indicate that there has been abrasion and accretion where there are several very significant locations. The maximum distance of the shoreline movements due to abrasion and accretion occurred in the Supiori Selatan District as far as -67.15 and 92.86 m, respectively. The average shoreline movement caused by abrasion ranges from -11.37 to -13.59 m and from 9.75 to 15.64 m in the case of accretion. From the comparison of abrasion and accretion, only the Kepulauan Aruri District has a positive value (dominant accretion), while the other four districts have a negative value (dominant abrasion). The shoreline changes rates in the study area caused by abrasion and accretion ranged from -1.22 to -1.46 m/yr and 1.05 to 1.68 m/yr, respectively. Abrasion and accretion in the study area are predominantly caused by natural factors such as waves, currents, and river flows, as well as caused by non-natural factors mainly due to human activities. Information on shoreline changes in the study area is an important aid for stakeholders involved in coastal area management. Therefore, planning, strategies, and mitigation efforts are urgently needed to anticipate increased coastal erosion and possible negative impacts.
EN
Monitoring activities on the dynamics of water shrinkage at Lake Limboto are essential to the lake’s ecosystem’s recovery. A remote sensing technology functions to monitor the dynamics of lake inundation area; this allows one to produce a comprehensive set of spatial and temporal data. Such complex satellite dataset demands extra time, greater storage resources, and greater computing capacity. The Google Earth Engine platform emerges as the alternative to tackle such problems. The present study aims to explore the capability of Google Earth Engine in formulating spatial and temporal maps of the inundation area at Lake Limboto. A total of 345 scenes of Landsat image on the study area (available during the period of 1989–2019) were involved in generating a quick inundation area map of the lake. The whole processes (pre-processing, processing, analysing, and evaluating) were automatized by using the Google Earth Engine interface. The evaluation of mapping result accuracy indicated that the average score of F1-score and Intersection over Union (IoU) was at 0.88 and 0.91, respectively. Moreover, the mapping results of the lake’s inundation area from 1989 to 2019 showed that the inundation area tended to decrease significantly in size over time. During the period, the lake’s area also shrank from 3023.8 ha in 1989 to 1275.0 ha in 2019. All in all, the spatiotemporal information about the changes in lake area may be treated as a reference for decision-making processes of lake management in the future.
EN
Optimal estimation of water balance components at the local and regional scales is essential for many applications such as integrated water resources management, hydrogeological modelling and irrigation scheduling. Evapotranspiration is a very important component of the hydrological cycle at the soil surface, particularly in arid and semi-arid lands. Mapping evapotranspiration at high resolution with internalised calibration (METRIC), trapezoid interpolation model (TIM), two-source energy balance (TSEB), and soil-plant-atmosphere and remote sensing evapotranspiration (SPARSE) models were applied using Landsat 8 images for four dates during 2014-2015 and meteorological data. Surface energy maps were then generated. Latent heat flux estimated by four models was then compared and evaluated with those measured by applying the method of Bowen ratio for the various days. In warm periods with high water stress differences and with important surface temperature differences, METRIC proves to be the most robust with the root-mean-square error (RMSE) less than 40 W∙m-2. However, during the periods with no significant surface temperature and soil humidity differences, SPARSE model is superior with the RMSE of 35 W∙m-2. The results of TIM are close to METRIC, since both models are sensitive to the difference in surface temperature. However, SPARSE remains reliable with the RMSE of 55 W∙m-2 unlike TSEB, which has a large deviation from the other models. On the other hand, during the days when the temperature difference is small, SPARSE and TSEB are superior, with a clear advantage of SPARSE serial version, where temperature differences are less important.
EN
Geomatic tools could be used efficiently for urban development planning. The problem of the study lies in the extensive land use of terrains that are now suitable for heavy construction which slows down the development of new facilities. Furthermore, the authorities are forced to plan future settlements around Setif, at a distance of 8 to 12 kilometers from the city limits, threatening the long-term viability of construction and the ring of farmland that connects them to the core city. This must be done during the planning stage based on a diachronic analysis of all the natural and physical factors/parameters. The main objective of this research is to explore the application of landscape metrics to the analysis and monitoring of urban growth in the city of Setif, north-east of Algeria. For this purpose, our research paper uses Geographic Information System (GIS) and Remote Sensing (RS) techniques based on Principal Component Analysis (PCA) and the Angle Mapper Algorithm (SAM) target method for the analysis of urban land planning and sustainable urban planning of Setif. In the result of these analyses we propose suitability/buildability maps with more suitable construction sites. The research method is based on a 17-year time series dataset compiled from the Sentinel 2A and Landsat imagery between 2004 and 2021. Additionally, we used a cadastral Vs geotechnical overlay to estimate soil capacity. This work proves again that the integration of RS and GIS techniques allows for scientific identification of the lands suitable for urban development (LAUP).
EN
The current research represents a pilot study for application of the Perpendicular Vegetation Index (PVI) for an area with forests in Bulgaria. It is the first of its kind when it comes to forest studying in the country to the best knowledge of the author. When it comes to soil background Landsat images and other spectral data may be used for monitoring forest territories as well. The study area is Pernik Province which is located in the western parts of Bulgaria. The main aim is to investigate the PVI for the forests of Pernik Province. The index has been calculated by the application of Landsat 8 bands. The PVI has been processed for several months of different years. The main focus is both on the beginning and the end of the growing season when there are significant changes in leaf biomass. The results are promising and show typical vegetation features in the beginning of the growing season (April), a well-developed vegetation (July) and a steadily decreasing biomass in November.
EN
Anthropogenic interventions have altered the natural environment and afected many of its physical, chemical, and biological characteristics. Changes in land use-land cover (LULC) are one of the main drivers that alter the hydrologic cycle and cause signifcant impacts on local, regional, and even the global climate system. It is now widely recognised and accepted that climate change is one of the gravest problems that our planet Earth is facing at present. This study analyses the impact of LULC dynamics on the spatial and temporal variation of land surface temperature (LST) in an inter-state river basin, which also happens to be the largest river basin in the state of Kerala, India, viz. the Bharathapuzha river basin, during the period 1990–2017. LST time-series analysis (derived from Landsat) revealed that 98% of the river basin experienced LST less than 298 K in January 1990. Over time, along with changes in LULC, LST also increased; in 2017, about 7.82% of the river basin experienced LST greater than 312 K. A notable change in LULC that occurred during this period was the drastic increase in areas with high albedo. The seasonal curves of LST derived from MODIS data are strong evidence of the devastating impacts of change in LULC on LST and, in turn, on climate change. The major spatial and temporal components of change in LST in the study region were identifed by principal component analysis (PCA). The results of this spatiotemporal analysis spread over a period of 28 years can be used for formulating sustainable development policies and mitigation strategies against extreme climatic events in the river basin.
EN
Post-industrial and post-mining areas have often been under strong anthropogenic pressure for a long time. As a result, such areas, after the ending of industrial activity require taking steps to revitalize them. It may cover many elements of the natural or urban environment, such as water, soil, vegetated areas, urban development etc. To carry out revitalization, it is necessary to determine the initial state of such areas, often using selected chemical, geophysical or ecological. After that it is also important to properly monitor the state of such areas to assess the progress of the revitalization process. For this purpose a variety of change detection technics were developed. Post-industrial areas are very often characterized by a large extent, are difficult to access, have complicated land cover. For this reason, it is particularly important to choose appropriate methods to assess the degree of pollution of such areas. Such methods should be as economical as possible and time-effective. A very desirable feature of such methods is that they should allow a quick assessment of the entire area. Geostatistics supplemented by modern remote sensing can be effective for this purpose. Nowadays, using remote sensing, it is possible to gather information simultaneously from the entire, even vast area, with high spatial, spectral and temporal resolution. Geostatistics in turn provides many tools that are able to enable rapid analysis and inference based on even very complicated often scarce spatial data sets obtained from ground measurement and satellite observations. The goal of the article was to present selected results obtained using geostatistical methods also related to remote sensing, which may be helpful for decision makers in revitalizing post-industrial and post-mining areas. The results described in this paper were based mostly on the previous studies, carried out by authors.
EN
We describe a method of calculating one of the basic phenomena influenced by groundwater recharge, namely evapotranspiration (ET). The Operational Simplified Surface Energy Balance (SSEBop) algorithm was applied to calculate actual evapotranspiration (ETa), being modified to include spatiotemporal changes of substrate humidity and so referred to as mSSSEBop. Calculations were performed within the Szkwa and Rozoga River catchments (NE Poland). Quantitative ETa assessment was based on the analysis of Landsat satellite images, hydrometeorological and hydrogeological data. The results obtained for the original SSEBop algorithm and the modified mSSEBop one were compared with the water balance and data from a MOD16A2 dataset. The calculated water balance gave ETa values close to results using mSSEBop (with differences of 9-54 mm/year). In the case of the original algorithm, differences were in range of 42-218 mm/year. When compared with MOD16A2 data, the differences were within the range of -16.7 to 23.2 mm/8 days, with the mSSEBop algorithm giving on average lower ETa sums (~14%) than MOD16A2 while SSEBop gave results higher than MOD16A2 by ~12%. The studies performed indicate that the method presented, using satellite data, gives a reliable, spatial and temporal ETa assessment for the mid latitudes.
11
Content available remote Changes in the built-up areas at the aeration wedges of City of Warsaw
EN
The main objective of this paper is to present increasing share of built-up areas at the aeration wedges of City of Warsaw. The idea of Warsaw aeration corridors had been arisen in 1916 and was adapted to the present times in 1992, 2006 and 2018 in the planning’s documents which described Warsaw spatial development conditions. The goal for creation these corridors has been to establish the air exchange between areas around the city (especially green areas) and downtown. The analyses were carried out for years: 1992, 1995, 1998, 2001, 2004, 2006, 2009 – based on Landsat-5; 2013 – based on Landsat-8; 2015, 2018 based on Sentinel-2. As a result of research, it was found that aeration wedges had been constantly built-up. In 1992 built-up areas covered 14% (767 ha) of aeration corridors, in 1998 – 17% (918 ha), in 2006 – 24% (1245 ha), in 2013 – 26% (1341 ha), in 2018 – 27% (1383 ha). The largest loss of green areas was noticed as: arable lands and meadows – from 42% to 29%. In addition, during the research it was observed that new buildings have been situated in unfavorable way. New buildings are the walls and barriers to the air masses coming to the downtown.
PL
Głównym celem pracy było zaprezentowanie zmian w zabudowie na obszarach klinów napowietrzających miasta Warszawy. Idea korytarzy napowietrzających narodziła się w 1916, a następnie była zaadaptowana to potrzeb i warunków i obecnych czasów w latach 1992, 2006 i 2018. Opisana ona była w dokumentach dotyczących zagospodarowania przestrzennego Warszawy. Celem, dla którego wyznaczono kliny było zapewnienie wymiany powietrza pomiędzy centrum miasta a terenami podmiejskimi (szczególnie terenami zieleni). Analizy zostały przeprowadzone dla lat 1992, 1995, 1998, 2001, 2004, 2006, 2009 – wykorzystano zobrazowania Landsat 5; 2013 – wykorzystano zobrazowanie z Landsat 8, 2015 i 2018 – wykorzystano zobrazowanie z Sentinel-2. W wyniku badań, stwierdzono, że tereny korytarzy są stale zabudowywane. W roku 1992 obszary zabudowane wynosiły 14% całości powierzchni korytarzy (767 ha), w 1998 – 17% (918 ha), w 2006 – 24% (1245 ha), w 2013 – 26% (1341 ha), a w 2018 – 27% (1383 ha). Zmiany te w największym stopniu, spowodowały straty w obszarach rolniczych i łąkach. Ich powierzchnia w 1992 roku zajmowała 42%, w 2018 było to tylko 29%. Ponadto, podczas badań zaobserwowano, iż nowe budynki budowane są w niekorzystnym położeniu – są one przeszkodą dla swobodnych ruchów mas powietrza.
EN
Currently, more than half of the world’s population is living in cities. Rapid and unplanned urbanization became a common scenario in rapidly developing countries such as those in Asia. Decline in vegetation coverage and increase in local air and land surface temperatures are among the adverse effects of unplanned urban growth. We used Landsat data for the period 1991–2017 to estimate the expansion of urban areas in terms of vegetation loss and the development of small-scale urban heat islands in developing cities in Kerala state of India. For the last 27 years, unplanned urbanization in Kerala state has increased and this resulted in the enhanced loss of vegetation and, possibly, resulted in the increase in land surface temperature (LST). Our results indicate that vegetation coverage, particularly near the urban areas, has been decreased by 5.8%, 10.4%, and 9.6% in Ernakulam, Trichur, and Kozhikode districts, respectively. The land surface temperatures also have been increased during the study period. It is interesting to note that higher increase in LST and higher reduction in vegetation coverage were observed in Trichur and Kozhikode districts compared with highly populated and urbanized Ernakulam district.
PL
Aktualne mapy pokrycia terenu są podstawą wielu dyscyplin nauki oraz mają szerokie zastosowanie aplikacyjne. Jednym z problemów aktualizacji map jest proces aktualizacji danych. Teledetekcja dostarcza codziennie nowych zobrazowań satelitarnych, które mogą zaspokoić potrzeby aktualizacji baz danych. W niniejszym artykule autorzy przedstawiają metodę klasyfikacji pokrycia terenu sztucznymi sieciami neuronowymi fuzzy ARTMAP zgodnie z założeniami i legendą Corine Land Cover na podstawie danych satelitarnych Landsat, które wykorzystywane są do opracowania map pokrycia terenu. W artykule użyto jako danych referencyjnych i weryfikacyjnych najnowszą mapę Corine Land Cover (CLC) 2012. Do przeprowadzenia klasyfikacji symulatorem wykorzystano trzy zdjęcia satelitarne Landsat TM (21.04.2011, 05.06.2010, 27.08.2011). Obszarem badań były okolice Warszawy. Wynikami pracy symulatora są mapy klasyfikacji pokrycia terenu oraz macierze błędów klasyfikacji. Uzyskane wyniki potwierdzają, że sztuczne sieci neuronowe mogą z powodzeniem być wykorzystywane do aktualizacji map pokrycia terenu.
EN
Modern land cover maps are the basis of many scientific disciplines and they are widely applied. One of the problems connected with the revision of maps is the data updating procedure. Remote Sensing daily provides us with the new satellite images, that can meet the needs of database updates. In this article the method of classification for land cover with the artificial, neural, fuzzy ARTMAP networks is presented by the authors in accordance with the objectives and legend of the CORINE Land Cover Map on the basis of the Landsat satellite data, which are used to elaborate the land cover maps. The latest CORINE Land Cover map 2012 polygons are used as the reference and verification data. Three satellite Landsat TM images of 21.04.2011, 05.06.2010, 27.08.2011 are processed by a fuzzy, artificial, neural network classificatory simulator. The area of research was Warsaw and its surrounding area. The results of this research are the classificatory land cover maps and error matrices. Acquired results confirm that the artificial neural networks can be successfully used for land cover updating.
EN
The aim of this study was to prepare geomorphological maps of pomorskie and warminsko-mazurskie voivodeships in scale 1:300 000. Analysis primarily were based on the General Geomorphological Map of Poland 1:500 000 and Landsat 5 TM satellite images in RGB 453 composition, and alternatively with Geological Map of Poland 1:200 000, Topographic Map of Poland 1:100 000 and Digital Terrain Model from Shuttle Radar Topography Mission. These materials were processed into digital form and imported them PUWG 1992 coordinate system. Based on them was lead interpretation and vectorization of geomorphological forms. It was detailing the boundaries in accordance with the content of the General Geomorphological Map of Poland 1:500 000. Then polygons were coded according to the numbering of J. Borzuchowski (2010). Very important was process to design a legend and then editing maps. The last stage of this study was to prepare a composition for printing maps. The effect of studies are geomorphological maps of pomorskie and warminsko-mazurskie voivodeships in scale 1:300 000, and an interactive databases in ESRI shapefile format (*.shp).
EN
The aim of this study was to investigate the possible use of geotechniques and generally available geodata for mapping land cover on reclaimed areas . The choice of subject was dictated by the growing number of such areas and the related problem of restoring their value. The validity of the use of modern technology, including GIS, photogrammetry and remote sensing, was determined, especially for the land cover classes mapping that are relevant in assessing the effects of reclamation and analyzes of the changes taking place on such sites. The study was performed for dump site of the Sulphur Mine "Machów", which is an example of the reclaimed area, located in the Tarnobrzeski district. The research materials consisted of aerial orthophotos, which were the basis of on-screen vectorization of land cover classes; Landsat satellite images, which were used in the pixel based classification; and the CORINE Land Cover database as a general reference to the global maps of land cover and land use. The site was characterized by relatively large mosaic of landscape which is typical for reclaimed areas. Due to this fact, high resolution aerial photos were most suitable for the land cover mapping, allowing distinguishing highest number of land cover classes. The process was also successfully automated with the means of pixel-based image classification on the satellite images. This resulted also in the subjectivity of the operator and time costs. The efford made to develop land cover classes, supported with thorough knowledge of the operator, is important for the proper evaluation of the reclamation process.
PL
Celem pracy było zbadanie możliwości wykorzystania technik geoinformatycznych i ogólnie dostępnych geodanych dla opracowywania map pokrycia (użytkowania) terenu obszarów zrekultywowanych. Wybór tematu był podyktowany rosnącą liczbą takich obszarów i częstym problemem przywrócenia lub nadania gruntom poprzemysłowym wartości użytkowych (wykonanie rekultywacji). Określano zasadność wykorzystania nowoczesnych technologii GIS oraz materiałów geodezyjnych dla wyznaczenia granic klas pokrycia terenu, istotnych w ocenie efektów rekultywacji oraz analizach zmian zachodzących na tego rodzaju obiektach. Badania wykonano dla zwałowiska zewnętrznego Kopalni Siarki "Machów", zlokalizowanego na terenie powiatu tarnobrzeskiego, będącego przykładem obszaru zrekultywowanego. Podstawowymi materiałami badawczymi były ortofotomapy lotnicze, na postawie których wykonano wektoryzację ekranową klas pokrycia terenu; zobrazowania satelitarne Landsat, które posłużyły do przeprowadzenia klasyfikacji pikselowej oraz dane programu CORINE Land Cover, jako ogólne odniesienie do globalnych map pokrycia i użytkowania terenu. Zwałowisko Kopalni „Machów” charakteryzowała stosunkowo duża mozaikowatość krajobrazu (często występująca na terenach rekultywowanych), więc właściwą przydatnością do sporządzania map pokrycia terenu charakteryzowały się wysokorozdzielcze ortofotomapy lotnicze, umożliwiające wyodrębnienie największej liczby klas pokrycia terenu. Dla zautomatyzowania procesu wyznaczania granic pokrycia terenu testowano, metodę klasyfikacji nadzorowanej zobrazowań satelitarnych. (najlepsze efekty uzyskano z użyciem w klasyfikacji algorytmu największego prawdopodobieństwa). Pozwoliła ona na zmniejszenie subiektywizmu i czasu pracy operatora Staranie wykonane opracowanie kategorii pokrycia terenu, poparte gruntowną wiedzą fotointerpretatora na temat przyjętych kierunków rekultywacji oraz czasu jej rozpoczęcia i zakończenia, wykonane na materiałach geodezyjnych odpowiedniej rozdzielczości jest istotne, gdyż jest podstawą dla właściwej oceny przeprowadzonej rekultywacji.
EN
The paper presents results of merging lower-resolution spectral data (Landsat, 30m) with panchromatic images of higher spatial resolution (IRS 5.8m). During the first stage of the research, thirty methods of merging satellite data (including their variants) have been tested. The first assessment was based on statistical measures covering spectral distortion and spatial enhancement of pansharpened images. The second assessment was based on the color composite factors essential for photo interpretation. Comparing both obtained ranks of methods revealed substantial differences in their assessed spectral distortion. On the other hand, there appeared similarities in the obtained values for the spatial enhancement of pansharpened images. The reasons of such discrepancies were defined. The research allowed appointing the HPF (High Pass Filter) and LCM (Local Correlation Modeling) methods as the best according to the tested factors. In the second part of the research, the applicability of the selected methods was tested. Information content of color composites was analyzed as well as tresholding and band ratioing. In the tests there were used images fused through five merging methods: HPF, LCM, IHS (Intensity, Hue, Saturation), PCA (Principal Components Analysis) and WMK (based on band ratioing and having specific photo interpretation features). The findings of the research suggest that none of the merging algorithms provide universal solution. Depending on the data processing technique used, the best results are based on images obtained from various integration methods. It means that the method ranks do not correspond with method applicability. Methods appointed as the best ones obtain poor results in some tests and methods which came low in the rank received high rank in some tests. If this conclusion becomes confirmed, it might be necessary to revise the assessment methods of merged images.
PL
W publikacji przedstawiono wyniki badań związanych z integracją danych spektralnych (Landsat) z obrazami panchromatycznymi o wyższej rozdzielczości przestrzennej (IRS). W pierwszym etapie porównano zgodność - przedstawionych we wcześniejszych publikacjach rankingów metod integracji: formalnej (Pirowski, 2009) i wizualnej (Pirowski, 2010). Zestawienie wykazało duże różnice w ocenie stopnia zniekształcenia informacji spektralnej generowanej przez poszczególne metody integracji. Natomiast potwierdziła się zgodność rankingów w aspektach związanych z oceną stopnia wzmocnienia przestrzennego syntetycznych obrazów. Za najlepsze metody, uzyskujące w obu rankingach wysokie noty, uznano HPF i LCM.. Wybranych pięć metod integracji - HPF, LCM, IHS, PCA i WMK - poddano testom praktycznym: analizie potencjału informacyjnego kompozycji barwnych, progowaniu oraz wagowaniu międzykanałowemu. Wstępne badania wskazują, iż żaden z algorytmów scalania nie daje produktu uniwersalnego. W zależności od zastosowanej techniki przetwarzania danych optymalne wyniki uzyskuje się bazując na obrazach pochodzących z różnych metod integracji. Pośrednio oznacza to, że opracowane rankingi nie przekładają się na aspekty praktyczne – metody, wskazane w nich jako najlepsze, wypadają w niektórych testach relatywnie słabo, i odwrotnie. Jeśli ta wstępna konkluzja się potwierdzi, oznaczać to będzie konieczność zrewidowania metod oceny scalonych obrazów.
EN
Changes in land use / land cover are the result of interaction between natural processes and human activity. Using GIS analysis to estimate the dynamic of these changes we can detect former trends and their simulation in the future. Diagnosed directions of changes can be used e.g. to create local plans of spatial management or region growth policy. Main goal of this study was to diagnose main trends of changes in land use / land cover in Malopolska voivodeship in last 25 years (1986-2010). Results were shown as statistics and map compositions. Project was created based on RapidEye and LANDSAT 5 TM satellite data and aerial imagery from 2009-2010. The best way to process huge amount and various data was to use Object Based Image Analysis (OBIA). As the results of classification we received 10 classes of land use for both terms of analyses (1986-1987 and 2009-2010). Identified classes were: bare soil, grass-covered areas, urban areas, rivers and watercourses, coniferous forest, leaf forest, peatbog, and other areas. Results show, that especially 2 classes arisen much: forest (4.39%) and urban areas (2.40%), mostly at the expanse of agricultural (-3.60%) and grass-covered areas (-1.18%). Based on results we can say, that changes detected in past 25 years in Malopolska region, which we can also notice today, agree with general trends of landscape changes, that we can observe in Poland for the last 3 decades. These general changes are: renewed succession of forest on areas where agricultural production discontinued; also intense development of road infrastructure. Object Based Image Analysis allowed to realize these study for area of more than 15 000 km2 for only a few weeks.
PL
Zmiany pokrycia terenu i użytkowania ziemi są rezultatem wzajemnego oddziaływania na siebie złożonych procesów przyrodniczych oraz społeczno-ekonomicznych. Analizy przestrzenne GIS dynamiki tych zmian umożliwiają wykrycie występujących w przeszłości trendów i procesów oraz ich symulację dla nadchodzącego okresu. Zdiagnozowane kierunki przemian krajobrazu mogą zostać wykorzystane m.in. przy tworzeniu lokalnych planów zagospodarowania przestrzennego, czy generalnie kreowaniu polityki rozwoju regionów. Celem prezentowanego opracowania było zdiagnozowanie głównych trendów przemian pokrycia terenu województwa małopolskiego na przestrzeni ostatnich dwudziestu pięciu lat (19862011) oraz ich statystyczne i graficzne zaprezentowanie w postaci kompilacji map numerycznych. Projekt wykonano w oparciu o dane teledetekcyjne: zobrazowania satelitarne RapidEye i LANDSAT TM oraz lotnicze ortofotomapy (PZGiK) z lat 2009 - 2010. Duża ilość i różnorodność danych wymusiła zastosowanie obiektowego przetwarzania danych teledetekcyjnych, tj. klasyfikacji OBIA (ang. Object Based Image Analysis). W wyniku przeprowadzanej klasyfikacji otrzymano 10 klas pokrycia i użytkowania terenu dla dwóch terminów badawczych (1986-87 oraz 2010-11), tj.: grunty orne, użytki zielone, tereny zurbanizowane, rzeki i cieki, zbiorniki wodne, lasy iglaste, lasy liściaste, zadrzewienia i zakrzewienia, tereny różne oraz torfowiska. Wykazano, iż na obszarze Małopolski wystąpiło znaczne zwiększenie powierzchni lasów (wzrost o 4.4%) oraz terenów zurbanizowanych (wzrost o 2.4%), głównie kosztem powierzchni gruntów rolnych (ubytek o 3.6%) oraz trwałych użytków zielonych (ubytek o 1.2%). Otrzymane wyniki pozwoliły wysunąć wniosek, iż zmiany jakie zachodziły w przeciągu 25 lat oraz te, z którymi wciąż mamy do czynienia w województwie małopolskim, pokrywają się z ogólnymi kierunkami i trendami przemian krajobrazu obserwowanymi w Polsce w ostatnich trzech dekadach, tj. procesami sukcesji wtórnej zbiorowisk leśnych na gruntach, na których zaprzestano produkcji rolnej oraz związanych z inwestycjami infrastruktury drogowej i kolejowej. Zastosowanie automatycznej klasyfikacji obiektowej oraz analiz przestrzennych GIS pozwoliło na realizację opracowania dla obszaru ponad 15.000 km2 w ciągu zaledwie kilku tygodni.
PL
W artykule przedstawiono możliwości identyfikacji produkcyjnych i ekologicznych siedlisk łąkowych na pojedynczym zdjęciu Landsat ETM+. Analizowano niezależnie dwa zdjęcia, pozyskane 10 września 1999 i 1 maja 2001 r. Podjęto próbę rozróżnienia siedlisk na podstawie par charakterystyk: kanałów spektralnych (ETM 3, 4, 5), kanału panchromatycznego (ETM8) i wskaźników różnicowych (NDVI - wskaźnik różnicowy obliczony z kanałów ETM4 i ETM3; ND(3,5) - wskaźnik różnicowy obliczony z kanałów ETM5 i ETM3), uzyskanych niezależnie z dwóch zdjęć. Z kategorią siedliskową związane są trzy pary charakterystyk obliczonych dla początku maja: ETM3 i NDVI, ETM4 i ETM5, jak również NDVI i ND(3,5). Jednak błędy klasyfikacji okazały się zbyt duże. Na zdjęciu wrześniowym nie stwierdzono różnic pomiędzy siedliskami w żadnej z par charakterystyk. Nie wyklucza to możliwości klasyfikacji siedlisk w trybie analizy wieloczynnikowej.
EN
The paper presents possibilities of identification of productive and ecological meadows on a single Landsat ETM+ image. Two images acquired on 10 September 1999 and 1 May 2001 were analyzed independently. Attempt was undertaken to distinguish habitats based on the following pairs of characteristics: spectral channels (ETM 3, 4, 5), panchromatic channel (ETM8) and differential indexes (NDVI, ND(3,5)) obtained from each of the images separately. Three pairs of characteristics are correlated with the habitat category obtained at the beginning of May: ETM3 vs NDVI, ETM4 vs ETM5 and NDVI vs ND(3.5). However, classification errors were far too high. In the image obtained in September, there were no differences between the habitats in any pair of characteristics. However, the possibility of classification of habitats in the multivariate analysis mode is still not excluded.
EN
Environmental changes are amongst the most important research subjects in geography. The changes may be natural, but also may be caused by human activity. Land cover is a significant component of the changing environment. Monitoring of its changes involves usage of satellite techniques. Landsat mission provides comparable data since forty years, very useful in land cover studies. Utilization of satellite techniques in such researches is developing quickly. This paper is an example of methods that enable quick and quite accurate assessment of range and spatial distribution of land cover changes. Practical application of image difference, principal component analysis and supervised classification to detect land cover changes is presented. Methods are applied to study area containing different land cover classes. Accuracy of methods was tested and compared. Combining methods presented in earlier researches, five new methods were developed: image difference, image difference with classification, classification, principal component analysis, principal component analysis with classification. Methods were applied to three different input datasets: pairs of images with different level of preprocessing. First dataset was a pair of georeferenced Landsat Thematic Mapper images. The second dataset was the same pair of images, atmospherically corrected using dark object subtraction method. Normalization of one image to the other provided the third dataset. Accuracy assessment was executed. Results were obtained from confusion matrices. Overall accuracy of methods was high, from 77% to 91%. Supervised classification was the most accurate method. Combining fully automatic methods with supervised classification has increased overall accuracy of automatic change detection, however not significantly. Studies on combining change detection methods should be continued. Future studies should concentrate on the automation of change detection process.
EN
Monitoring the plant moisture has a significant role in geographical research. It may be used, among the others, for climate modelling, agricultural predicting, rational water management, drought monitoring and determining vulnerability to the occurrence of the fire. Traditional methods, based on field measurements, are the most accurate, but also time-consuming. Therefore these methods can be applied only in a limited area. In order to explore bigger areas remote sensing methods are useful. To analyse plant condition and water content vegetation indices can be used. Their calculations are based on the reflectance in different bands. Despite many studies conducted on the development of remote sensing indices, still there is a need for verification of their accuracy and usefulness by comparing the results obtained through remote sensing tools with the results of field measurements. In this paper three indices are used: Moisture Stress Index (MSI), Normalized Difference Infrared Index (NDII) and transformation Tasseled Cap (the Wetness band). The aim of this study was to compare the value of vegetation indices calculated using images from Landsat 5 Thematic Mapper with the results of field measurement from five test areas of different type of land cover: cereal crops, non-cereal crops, forests, meadows and pastures. Research was carried out in province Ontario (Canada) and consisted of two stages. The first stage was the fi eld measurements, where the specified number of plant samples was collected and water content was calculated. The second stage consisted of the preparation of relevant satellite images (atmospheric correction and making the mosaic) and the calculation of vegetation indices. The study has shown, that statistical relationships between data sets obtained through remote sensing indices and calculated on the basis of field measurements are diverse for different indices. MSI and NDII values are significantly correlated with the water content in plants (R= -0.62 and 0.56, respectively). The correlation of TCW was rated as moderate (R=0.30). Spatial distribution of water content based on maps created using NDII and MSI is similar. It was noticed that TC Wetness transformation overestimates water content in cereal plants (smaller water content) and underestimates it in natural green plant ecosystems, which generally have higher water content. As a result, the range of water content values obtained from TCW is more narrow (dominates the class of 60-70% water in plants) than the range of values calculated using NDII and MSI. Both indices have more uniform distribution dominated by the classes of moderate water content (50-60%), rather wet plants (60-70%) and very wet plants (70-80%). Each index is characterized by different distribution of the water content. In general values calculated on the basis of NDII and MSI are higher than calculated using TCW. In order to perform more accurate analysis between values calculated using satellite images and the results of field measurements, the values of particular types of land cover should be compared.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.