Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Lagrange polynomial
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Recently, the notion of positive linear operators by means of basic (or q-) Lagrange polynomials and A-statistical convergence was introduced and studied in [M. Mursaleen, A. Khan, H. M. Srivastava and K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput. 219 2013, 12, 6911-6918]. In our present investigation, we introduce a certain deferred weighted A-statistical convergence in order to establish some Korovkin-type approximation theorems associated with the functions 1, t and t2 defined on a Banach space C[0,1] for a sequence of (presumably new) positive linear operators based upon (p,q)-Lagrange polynomials. Furthermore, we investigate the deferred weighted A-statistical rates for the same set of functions with the help of the modulus of continuity and the elements of the Lipschitz class. We also consider a number of interesting special cases and illustrative examples in support of our definitions and of the results which are presented in this paper.
2
Content available The sea bottom surface described by Coons pieces
EN
In this paper, a method of mathematical description of a surface, which can be used for modeling the sea bottom and detecting underwater objects using sonar (a side scan sonar or a front one) or a multibeam echosounder, is presented. The method is based on Coons plates and is described in four steps, which can be used for determination of the sea bottom for spatial presentation and volume calculation. A new sounding vessel and its equipment were used for the collection of geospatial data, and the results of a geospatial model of the sea bottom on the basis of the collected data are shown. The sea bottom is presented using Coons surfaces and a triangulated irregular network.
PL
Podczas rejestracji ruchu z zastosowaniem pasywnego systemu akwizycji ruchu, w trajektorii danego markera może powstać luka, którą w procesie obróbki danych należy uzupełnić. Stosuje się w tym celu różne algorytmy interpolacji. Artykuł przedstawia trzy różne metody interpolacji: liniową, wielomianem Lagrange’a drugiego stopnia oraz piątego stopnia. W oryginalnych danych 3D zostały utworzone dziury, które następnie uzupełniono trzema metodami. Każda metoda została oceniona za pomocą miary odległości Euklidesa dla trzech wymiarów danych oryginalnych oraz po uzupełnieniu trajektorii. W artykule przedstawiono także program do uzupełniania trajektorii, zaimplementowany w języku C++. Przedstawiona analiza dotyczy uzupełnianie trajektorii wybranych markerów z modelu Plug-in Gait podczas chodu osoby.
EN
During the motion registration using passive motion capture system in the marker’s trajectory a gap may appear, which in the data post-processing should be filled in. Various interpolation algorithms are used for this purpose. This article presents three different interpolation methods: linear, polynomial of Lagrange of second degree and fifth degree. In the original 3D data the holes have been created, which are then filled in by mentioned methods. Each method was evaluated by measuring the Euklides distance for three dimensions of the original and interpolated data. The article presents the program to interpolate gaps in the trajectory, implemented in C ++ language. The analysis concerns the interpolation of selected marker’s trajectory which belongs to the Plug-in Gait model while performing walking.
PL
Kluczowym problemem decydującym o dokładności rozwiązań w brzegowych równaniach całkowych (BRC) i parametrycznych układach równań całkowych (PURC) jest obliczanie całek osobliwych. W metodzie elementów brzegowych stosowanej do rozwiązywania BRC problem ten został efektywnie rozwiązany w wyniku wyeliminowania konieczności bezpośredniego obliczania całek osobliwych. Bezpośrednie zastosowanie tego jednak sposobu w metodzie PURC okazało się niemożliwe. Celem pracy było przeprowadzenie badań dotyczących wyeliminowania konieczności obliczania całek osobliwych i użycia sposobu stosowanego w klasycznej MEB. W tym celu do aproksymacji funkcji brzegowych zaproponowano wielomiany Lagrange’a.
EN
One of the most important problem which decided about accuracy of boundary problems solution using boundary integral equations and parametric integral equations systems is solving singular integrals. In boundary element method, which is used for solving boundary integral equations, the problem has been efficiently solved by eliminating the necessity of direct solving singular integrals. Unfortunately, the direct application of such a way in the PIES method appeared to be impossible. The aim of this work was to conduct studies about elimination of solving singular integrals and application of a way used in the classic MEB. For such a purpose, to approximate boundary function, the Lagrange polynomial was proposed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.