Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Lévy flight
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, forecasting has received increasing attention since it provides an important basis for the effective operation of power systems. In this paper, a hybrid method, composed of kernel principal component analysis (KPCA), tree seed algorithm based on Lévy flight (LTSA) and extreme learning machine (ELM), is proposed for short-term load forecasting. Specifically, the randomly generated weights and biases of ELM have a significant impact on the stability of prediction results. Therefore, in order to solve this problem, LTSA is utilized to obtain the optimal parameters before the prediction process is executed by ELM, which is called LTSA-ELM. Meanwhile, the input data is extracted by KPCA considering the sparseness of the electric load data and used as the input of LTSA-ELM model. The proposed method is tested on the data from European network on intelligent technologies (EUNITE) and experimental results demonstrate the superiority of the proposed approaches compared to the other methods involved in the paper.
EN
Among the data clustering algorithms, k-means (KM) algorithm is one of the most popular clustering techniques due to its simplicity and efficiency. However, k-means is sensitive to initial centers and it has the local optima problem. K-harmonic-means (KHM) clustering algorithm solves the initialization problem of k-means algorithm, but it also has local optima problem. In this paper, we develop a new algorithm for solving this problem based on an improved version of particle swarm optimization (IPSO) algorithm and KHM clustering. In the proposed algorithm, IPSO is equipped with Cuckoo Search algorithm and two new concepts used in PSO in order to improve the efficiency, fast convergence and escape from local optima. IPSO updates positions of particles based on a combination of global worst, global best with personal worst and personal best to dynamically be used in each iteration of the IPSO. The experimental result on five real-world datasets and two artificial datasets confirms that this improved version is superior to k-harmonic means and regular PSO algorithm. The results of the simulation show that the new algorithm is able to create promising solutions with fast convergence, high accuracy and correctness while markedly improving the processing time.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.