Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Krogh cylinder
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of the study was to analyze the combined model of bioheat transfer and oxygen distribution in tissue during exposition to the external heat impulse. The effect of temperature and thermal damage to the tissue on the values of its thermophysical parameters was taken into account. The variable value of the perfusion coefficient affects the blood velocity in the capillary and thus the distribution of the partial oxygen pressure in the tissue. Various models of the oxygen dissociation curves were also considered and a sensitivity analysis was performed for the parameters of the oxygen distribution model. In the numerical realization stage, the finite difference method and the shooting method were used.
EN
A numerical analysis of the thermal damage process that proceeds in biological tissue during laser irradiation is presented. Heat transfer in the tissue is assumed to be transient and two-dimensional. The internal heat source resulting from the laser irradiation based on the solution of optical diffusion equation is taken into account. Changes in tissue oxygen distribution resulting from temperature changes are analyzed using the Krogh cylinder model with Michaelis-Menten kinetics. A Hill model was used to describe the oxyhemoglobin dissociation curve. At the stage of numerical realization, the boundary element method and the finite difference method have been applied.
EN
The aim of the study was to analyze changes in tissue oxygen distribution resulting from temperature changes by the use of the Krogh cylinder model with Michaelis-Menten kinetics. A Hill model was also used to describe the oxyhemoglobin dissociation curve. In particular, variable values of parameters of dissociation curve and blood velocity in capillary were considered. Mathematical description was based on two separate equations for radial and axial directions. An additional task related to determination of the temperature, tissue thermal damage and perfusion was also solved. At the stage of numerical realization, the finite difference method was used.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.