Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Karkonosze-Izera Massif
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tourmaline occurring in hornfelses from the eastern envelope of the Karkonosze Granite (Western Sudetes, Poland) reveals at least two stages of crystallization expressed by its complex zoning. The cores and mantles of the crystals probably grew during prograde metamorphism under intermediate pressure-temperature conditions reflected by increasing Mg, Ti and Ca. Outermost rims show enrichment in Al and Ca, indicating growth during contact metamorphism in the presence of an Al-saturating phase. The Ti-content in biotite indicates that the temperature of the contact metamorphic event did not exceed 650ºC. The presence of andalusite and the lack of garnet and cordierite also indicates pressure conditions of ~ 2-3 kbar, typical of the C1 bathozone of Carmichael (1978) or the P1 bathozone of Pattison (2001).
EN
Preliminary sulphur isotope data are presented for selected ore deposits and occurrences in the Karkonosze-Izera Massif, namely, polymetallic mineralization sites at Budniki, Ciechanowice, Izerskie Garby and Sowia Dolina, and the pyrite deposit at Wieściszowice. The data reveal two populations of δ34S values: from 2.74 to 3.95‰ (pyrrhotites and pyrites in Sowia Dolina, and some pyrites in Wieściszowice) and from 0.79 to 1.8‰ (pyrites in Budniki, Ciechanowice and Izerskie Garby, and some pyrites from Wieściszowice). All of the data are indicative of endogenic sulphur typical of hydrothermal mineralization despite the genetic differences between the sites.
EN
The Miedzianka mining district has been known for ages as a site of polymetallic ore deposits with copper and, later, uranium as the main commodities. Although recently uneconomic and hardly accessible, the Miedzianka ores attract Earth scientists due to the interesting and still controversial details of their ore structure, mineralogy and origin. Our examination of the ore mineralization from the Miedzianka district was based exclusively on samples collected from old mining dumps located in the vicinity of Miedzianka and Ciechanowice, and on samples from the only available outcrop in Przybkowice. In samples from the Miedzianka field, chalcopyrite, pyrite, galena, bornite, chalcocite, digenite, arsenopyrite, magnetite, sphalerite, tetrahedrite-tennantite, bornite, hematite, martite, pyrrhotite, ilmenite, cassiterite and covellite are hosted in quartz-mica schists and in coarse-grained quartz with chlorite. In the Ciechanowice field, the ore mineralization occurs mainly in strongly chloritized amphibolites occasionally intergrown with quartz and, rarely, with carbonates. Other host-rocks are quartz-chlorite schist and quartzites. Microscopic examination revealed the presence of chalcopyrite, pyrite, sphalerite, galena, tetrahedrite-tennantite, bismuthinite, native Bi, arsenopyrite, löllingite, cassiterite, cobaltite, gersdorffite, chalcocite, cassiterite, bornite, covellite, marcasite and pyrrhotite. Moreover, mawsonite and wittichenite were identified for the first time in the district. In barite veins cross-cutting the greenstones and greenschists in Przybkowice, we found previously-known chalcopyrite, chalcocite and galena. The composition of the hydrothermal fluids is suggested to evolved through a series of consecutive systems characterized, in turn, by Ti-Fe-Sn, Fe- As-S, Fe-Co-As-S, Cu-Zn-S and, finally, Cu-Pb-Sb-As-Bi compositions.
EN
This paper provides new data on the mineralogy and mineral chemistry of the Czarnów ore deposit, a polymetallic vein that occurs within the eastern envelope of the Karkonosze Pluton (West Sudetes). New data are also provided on the deposits' geothermometry, mineral succession, and origins. The Czarnów ore vein is about 500 m long, strikes SW-NE, dips 80° SE and continues to a depth of 200 m. It is hosted within the albite-mica schists, quartzofeldspathic rocks and striped amphibolites that comprise the Czarnów Schist Formation (CSF); its western part is composed of almost monomineral arsenopyrite, whereas the southwestern part locally contains a pyrrhotite lens that extends downwards. Although many types of sulphides, sulphoarsenides, sulphosalts and native phases accompanied by oxides and arsenates have been previously reported, this paper describes four minerals that have not been previously identified from the Czarnów deposit: ferrokësterite, ikunolite, bismite and pentlandite. Geothermometry data suggest formation temperatures of arsenopyrite between 551 °C and 420 °C and that of sphalerite between about 400 °C to about 200 °C. Fluid inclusion data from vein quartz gave homogenization temperatures between 430 °C and 150 °C. Integrat on of textural and other data suggests the following primary mineral succession: early arsenopyrite and cassiterite as the high-temperature phases; then combinations of pyrrhotite, pyrite, chalcopyrite and sphalerite, all of which formed over a wide temperature range; finally, low temperature galena and Bi phases. Secondary weathering products overprint the primary sequences. Cataclasis of the first-formed arsenopyrite imply that mineralization was related to at least one tectonic event in the region. The Czarnów ore deposit probably resulted from hydrothermal activity associated with the near Karkonosze granite.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.