Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  K-Nearest Neighbors
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study employs an integrated methodology for the analysis and diagnosis of bearing faults in rotating machinery and wind turbine systems. The methodology begins by analyzing the original signal using Variational Mode Decomposition to extract distinct modes. Subsequently, the envelope is derived from the optimal mode and transformed into the frequency domain using Fast Fourier Transform to compute the envelope spectrum. The spectrum is segmented into specific frequency bands, and the energy within each band is quantified as features for training a K Nearest Neighbors classification model. The dataset is partitioned into training and testing subsets using cross-validation, and model performance is assessed using metrics such as accuracy and F1 score to ensure robust diagnostic capabilities. Comparative analysis of frequency spectra from real wind turbine signals highlights improvements in energy localization and distribution post-envelope processing. The proposed methodology is then applied to classify faults using the Case Western Reserve University dataset, demonstrating significant enhancements in diagnostic accuracy. These findings underscore the efficacy of the methodology in advancing fault diagnosis in complex machinery systems.
2
Content available remote K-Nearest Neighbours oraz K-Means: Zrozumienie zasad działania oraz zalet i wad
PL
Uczenie maszynowe jest metodą analizy danych, polegającą na automatyzacji modeli analitycznych, dzięki któremu możliwe jest uzyskanie dokładniejszych wyników. Wyróżnia się cztery rodzaje algorytmów - nadzorowane, półnadzorowane, nienadzorowane oraz wzmocnione, do których zalicza się między innymi algorytm k-najbliższych sąsiadów (K-Nearest Neighbors - KNN) oraz algorytm k-średnich (K-Means). Pierwszy z nich jest nieparametryczny, nadzorowanym klasyfikatorem uczenia się, natomiast drugi zaliczany jest do uczenia maszynowego bez nadzoru. Algorytm k-najbliższych sąsiadów używany jest w przypadku klasyfikacji oraz regresji, podczas gdy algorytm k-średnich stosowany jest w zadaniach grupowych. Oba algorytmy, dzięki wielu zaletom znajdują szerokie zastosowanie w różnorodnych dziedzinach.
EN
Machine learning is a method of data analysis that involves automating analytical models to produce more accurate results. There are four types of algorithms - supervised, semi-supervised, unsupervised and enhanced, which include the K-Nearest Neighbors (KNN) algorithm and the k-means (K-Means) algorithm. The former is a non-parametric supervised learning classifier, while the latter is classified as unsupervised machine learning. The k-nearest neighbor algorithm is used for classification and regression, while the k-means algorithm is used for clustering tasks. Both algorithms, thanks to their many advantages, are widely used in a variety of fields.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.