Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Jensen equation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A variant of Jensen’s functional equation on semigroups
EN
We determine the solutions f : S → H of the following functional equation f(xy) + f(σ(y)x) = 2f(x), x,y∈S, and the solutions f1, f2, f3 : M → H of the functional equation f1(xy) + f2(σ(y)x) = 2f3(x), x,y∈M, where S is a semigroup, M is a monoid, H is an abelian group 2-torsion free, and σ is an involutive automorphism.
EN
We show that the one-sided regularizations of the generator of any uniformly bounded set-valued Nemytskij composition operator mapping the space of bounded variation functions in the sense of Wiener into the space of bounded variation functions with closed bounded convex values (in the sense of Wiener) are affine functions.
EN
In this paper, we consider the Nemytskii operator (H f) (t) = h(t, f(t)), generated by a given function h. It is shown that if H is globally Lipschitzian and maps the space of functions of bounded (p, 2, α)-variation (with respect to a weight function α) into the space of functions of bounded (q, 2, α)-variation (with respect to α) 1 < q < p, then H is of the form (H f) (t) = A(t)f(t) + B(t). On the other hand, if 1 < p < q then H is constant. It generalize several earlier results of this type due to Matkowski–Merentes and Merentes. Also, we will prove that if a uniformly continuous Nemytskii operator maps a space of bounded variation with weight function in the sense of Merentes into another space of the same type, its generator function is an affine function.
EN
In this paper we consider the Nemytskii operator (Hf) (t) = h(t, f (t)), generated by a given set-valued function h is considered. It is shown that if H is globally Lipschitzian and maps the space of functions of bounded p-variation (with respect to a weight function α) into the space of set-valued functions of bounded q-variation (with respect to α) ) 1 < q < p, then H is of the form (Hϕ)(t) = A(t)ϕ(t) + B(t). On the other hand, if 1 < p < q, then H is constant. It generalizes many earlier results of this type due to Chistyakov, Matkowski, Merentes-Nikodem, Merentes-Rivas, Smajdor-Smajdor and Zawadzka.
EN
We prove that any uniformly continuous Nemytskii composition operator in the space of functions of bounded generalized Φ-variation in the Schramm sense is affine. A composition operator is locally defined. We show that every locally defined operator mapping the space of continuous functions of bounded (in the sense of Jordan) variation into the space of continous monotonic functions is constant.
EN
We consider the Nemytskij operator, defined by (Nφ)(x) ? G(x, φ(x)), where G is a given set-valued function. It is shown that if N maps AC(I, C), the space of all absolutely continuous functions on the interval I ? [0, 1] with values in a cone C in a reflexive Banach space, into AC(I, K), the space of all absolutely continuous set-valued functions on I with values in the set K, consisting of all compact intervals (including degenerate ones) on the real line R, and N is uniformly continuous, then the generator G is of the form G(x, y) = A(x)(y) + B(x), where the function A(x) is additive and uniformly continuous for every x ∈ I and, moreover, the functions x ? A(x)(y) and B are absolutely continuous. Moreover, a condition, under which the Nemytskij operator maps the space AC(I, C) into AC(I, K) and is Lipschitzian, is given.
EN
We show that the one-sided regularizations of the generator of any uniformly continuous and convex compact valued composition operator, acting in the spaces of functions of bounded variation in the sense of Wiener, is an affine function.
EN
Assuming that a Nemytskii operator maps a subset of the space of bounded variation functions in the sense of Riesz into another space of the same type, and is uniformly continuous, we prove that the generator of the operator is an affine function.
EN
Assume that the generator of a Nemytskii composition operator is a function of three variables: the first two real and third in a closed convex subset of a normed space, with values in a real Banach space. We prove that if this operator maps a certain subset of the Banach space of functions of two real variables of bounded Wiener φ-variation into another Banach space of a similar type, and is uniformly continuous, then the one-sided regularizations of the generator are affine in the third variable.
EN
We show that any uniformly continuous and convex compact valued Nemytskii composition operator acting in the spaces of functions of bounded φ-variation in the sense of Riesz is generated by an affine function.
11
Content available remote On Nemytskij operator of substitution in the C1 space of set-valued functions
EN
We consider the Nemytskij operator, i. e., the operator of substitution, defined by (N[...]x) := G(x,<[...](x)), where G is a given multifunction. It is shown that N maps C1 (I, C), the space of all continuously differentiable functions on the interval I with values in a cone C in a Banach space, into C1 (I, cc(Z)), the space of all continuously differentiable set-functions on I with compact and convex values in a Banach space Z and N fulfils the Lipschitz condition if and only if the generator G is of the form G(x,y)=A(x,y) + B(x) where A(x, •) is continuous, linear function, A(.,y) and B are continuously differentiable and the function x— > A(x, •) is Lipschitzian.
EN
We consider the Nemytskii operator, i.e., the operator of substitution, defined by (Nφ)(x) := G(x,φ(x)), where G is a given multifunction. It is shown that if N maps a Hölder space Hα into Hβ and N fulfils the Lipschitz condition then G(x,y) = A(x,y) + B(x), where A(x,·) is linear and A(·,y), B ∈ Hβ. Moreover, some conditions are given under which the Nemytskii operator generated by (1) maps Hα into Hβ and is Lipschitzian.
EN
Let (X, || . ||) and [Y, || . ||] be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskii operators, i.e. the composition operators defined by [Nu)(t) = H(t,u[t)), where H is a given set-valued function. It is shown that if the operator N maps the space RV[phi]1 ([a, b]; K) into RW[phi]2([a, b]; CC[Y)) (both are spaces of functions of bounded [phi]- variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u[t)) = A(t]u(t)+B(t), where A(t) is a linear continuous set-valued function and B is a set-valued function of bounded [phi]2-variation in the sense of Riesz. This generalizes results of G. Zawadzka [12], A. Smajdor and W. Smajdor [II], N. Merentes and K. Nikodem [5], and N. Merentes and S. Rivas [7].
14
Content available remote On conditional Jensen equation
15
Content available remote Note on Jensen and Pexider functional equations
EN
We determine the general solutions of the Jensen functional equation 2f (x+y):2=f(x) + f(y), x,y zawiera się M and the Pexider functional equation f(x+y)=g(x)+h(y), x,y zawiera się M , for f, g, h : M --+ S , where M is an Abelian semigroup with the division by 2 and S is an abstract convex cone satisfying the cancellation law. Some applications to set-valued versions of these equations are given.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.