Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  IoT middleware
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Some security features of selected IoT platforms
EN
IoT (Internet of Things) is certainly one of the leading current and future trends for processing in the current distributed world. It is changing our life and society. IoT allows new ubiquitous applications and processing, but, on the other hand, it introduces potentially serious security threats. Nowadays researchers in IoT areas should, without a doubt, consider and focus on security aspects. This paper is aimed at a high-level review of the existing IoT enabling standalone middleware solutions and frameworks in terms of potential application areas, architecture and components, communication APIs as well as support for key security features including access control, support against attacks on service, device authorization and data filtering. On the one hand, it allows the developer to choose the middleware best matching their needs. On the other hand, it can serve as a starting point for further research on middleware security features based on the provided security related open areas and challenges.
2
Content available IoT sensing networks for gait velocity measurement
EN
Gait velocity has been considered the sixth vital sign. It can be used not only to estimate the survival rate of the elderly, but also to predict the tendency of falling. Unfortunately, gait velocity is usually measured on a specially designed walk path, which has to be done at clinics or health institutes. Wearable tracking services using an accelerometer or an inertial measurement unit can measure the velocity for a certain time interval, but not all the time, due to the lack of a sustainable energy source. To tackle the shortcomings of wearable sensors, this work develops a framework to measure gait velocity using distributed tracking services deployed indoors. Two major challenges are tackled in this paper. The first is to minimize the sensing errors caused by thermal noise and overlapping sensing regions. The second is to minimize the data volume to be stored or transmitted. Given numerous errors caused by remote sensing, the framework takes into account the temporal and spatial relationship among tracking services to calibrate the services systematically. Consequently, gait velocity can be measured without wearable sensors and with higher accuracy. The developed method is built on top of WuKong, which is an intelligent IoT middleware, to enable location and temporal-aware data collection. In this work, we present an iterative method to reduce the data volume collected by thermal sensors. The evaluation results show that the file size is up to 25% of that of the JPEG format when the RMSE is limited to 0.5º.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.