Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Intrinsic Mode Functions
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The most challenging in speech enhancement technique is tracking non-stationary noises for long speech segments and low Signal-to-Noise Ratio (SNR). Different speech enhancement techniques have been proposed but, those techniques were inaccurate in tracking highly non-stationary noises. As a result, Empirical Mode Decomposition and Hurst-based (EMDH) approach is proposed to enhance the signals corrupted by non-stationary acoustic noises. Hurst exponent statistics was adopted for identifying and selecting the set of Intrinsic Mode Functions (IMF) that are most affected by the noise components. Moreover, the speech signal was reconstructed by considering the least corrupted IMF. Though it increases SNR, the time and resource consumption were high. Also, it requires a significant improvement under nonstationary noise scenario. Hence, in this article, EMDH approach is enhanced by using Sliding Window (SW) technique. In this SWEMDH approach, the computation of EMD is performed based on the small and sliding window along with the time axis. The sliding window depends on the signal frequency band. The possible discontinuities in IMF between windows are prevented by the total number of modes and the number of sifting iterations that should be set a priori. For each module, the number of lifting iterations is determined by decomposition of many signal windows by standard algorithm and calculating the average number of sifting steps for each module. Based on this approach, the time complexity is reduced significantly with suitable quality of decomposition. Finally, the experimental results show the considerable improvements in speech enhancement under non-stationary noise environments.
2
Content available remote Application of Variational Mode Decomposition on Speech Enhancement
EN
Enhancement of speech signal and reduction of noise from speech is still a challenging task for researchers. Out of many methods signal decomposition method attracts a lot in recent years. Empirical Mode Decomposition (EMD) has been applied in many problems of decomposition. Recently Variational Mode Decomposition (VMD) is introduced as an alternative to it that can easily separate the signals of similar frequencies. This paper proposes the signal decomposition algorithm as VMD for denoising and enhancement of speech signal. VMD decomposes the recorded speech signal into several modes. Speech contaminated with different types of noise is adaptively decomposed into various components is said to be Intrinsic Mode Functions (IMFs) by shifting process as in Empirical Mode decomposition (EMD) method. Next to it the denoising technique is applied using VMD. Each of the decomposed modes is compact. The simulation result shows that the proposed method is well suited for the speech enhancement and removal of noise by restoring the original signal.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.