Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 21

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Ikonos
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
1
Content available remote Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers
EN
Boosting is a classification method which has been proven useful in non-satellite image processing while it is still new to satellite remote sensing. It is a meta-algorithm, which builds a strong classifier from many weak ones in iterative way. We adapt the AdaBoost.M1 boosting algorithm in a new land cover classification scenario based on utilization of very simple threshold classifiers employing spectral and contextual information. Thresholds for the classifiers are automatically calculated adaptively to data statistics. The proposed method is employed for the exemplary problem of artificial area identification. Classification of IKONOS multispectral data results in short computational time and overall accuracy of 94.4% comparing to 94.0% obtained by using AdaBoost.M1 with trees and 93.8% achieved using Random Forest. The influence of a manipulation of the final threshold of the strong classifier on classification results is reported.
PL
Wszystkie systemy obrazowania satelitarnego o bardzo dużej rozdzielczości (VHRS) mają możliwość wychylania układu optycznego od linii pionu we wszystkich kierunkach o znaczne kąty. To znakomicie ułatwia planowanie obrazowania interesujących obszarów w danym przejściu satelity. Jednak wraz ze wzrostem kata wychylenia kamery pogarsza się zdolność rozdzielcza obrazu i rośnie wpływ deniwelacji, co utrudnia proces opracowania. Z tego powodu, dla celów mapowania, wykorzystuje się obrazy pozyskane przy niewielkim kącie wychylenia kamery, nie przekraczającym 15° - 20°. W artykule przeanalizowano ilościowe skutki większego wychylenia i zaprezentowano wyniki korekcji geometrycznej obrazu IKONOS o wychyleniu 43°. Uzyskane wyniki zachęcają do szerszego stosowania takich obrazów. Mogą one zostać użyte dla wielu innych celów, na przykład w rolnictwie, gdzie data uzyskiwania obrazu może mieć krytycznego znaczenia. Uzyskane wyniki spełniają wymagania UE w dziedzinie tworzenia orto-foto-map jako geometryczna podstawa dla systemów LPIS - IACS. Obrazy uzyskane pod dużym kątem wychylenia mają inną charakterystykę jeśli chodzi o interpretację co może być zaletą dla niektórych zastosowań, na przykład "perspektywiczny" widok miasta z wysokimi budynkami i widoczne fasady budynków może być dodatkowym atutem dla ekspertów zagospodarowania miasta. Oceniając przydatność obrazów VHRS do tworzenia map, należy być świadomym dwóch ograniczeń: geometrycznej dokładności i ich zawartości. Drugi aspekt jest o wiele bardziej krytyczny. Na podstawie takich obrazów, można tworzyć orto-foto-mapy o parametrach odpowiadających skali 1:5 000. Jednakże te obrazy nie mogą spełnić wymagań do tworzenia map odpowiadających tradycyjnej mapie topograficznej w skali 1:10 000. Wynika to z badań wykonanych przez autora - zawartość obrazów VHRS odpowiada zawartości tradycyjnych zdjęć lotniczych w skali 1:25 000 - 1:40 000.
PL
W ostatnich latach fotogrametria satelitarna rozwija się szczególnie dynamicznie pod kątem wykorzystania w tematyce kartograficznej. Podstawowym zadaniem tego procesu jest korekcja geometryczna zobrazowań satelitarnych polegająca na wyeliminowaniu zniekształceń i uzyskaniu produktu kartometrycznego, jakim jest ortofotomapa. Od 1999 roku zobrazowania satelitarne o bardzo wysokiej rozdzielczości, takie jak Ikonos czy QuickBird, dają możliwości generowania ortofotomap. W fotogrametrii satelitarnej mamy do czynienia z dwoma zasadniczymi drogami metod korekcji. Jednej - bazującej na opisie wielomianowym, gdzie współczynniki do procesu korekcji są dostarczane wraz z obrazem. Drugiej - wykorzystującej typowe fotogrametryczne zależności opisane przez warunek kolinearności. W literaturze można spotkać wiele różnorakich autorskich podejść do tego problemu. Artykuł niniejszy przedstawia model ścisły, opracowany w Instytucie Fotogrametrii i Kartografii Politechniki Warszawskiej. Jest on oparty na równaniu kolinearności uwzględniającym zmiany w czasie elementów orientacji zewnętrznej, które za pomocą parametrów charakteryzujących położenie sensora na orbicie oraz położenie orbity w układzie geocentrycznym opisuje zależność pomiędzy powierzchnią Ziemi i jej zobrazowaniem. Obecnie prowadzone są badania mające na celu praktyczną weryfikację opracowanego modelu oraz wyznaczenie minimalnej liczby fotopunktów niezbędnych dla procesu ortorektyfikacji obrazów Ikonos i QuickBird. Autorzy omawiają podstawowe kroki opracowanego algorytmu, jak i prezentują pierwsze uzyskane rezultaty, porównując je z podobnymi modelami opracowanymi przez dr. K. Jakobsena i dr. T. Toutina.
EN
Satellite Photogrammetry has been dynamically developing over recent year. This is especially true in terms of application in the field of cartography. The basic objective of this process is the geometrical correction of satellite imagery involving the elimination of distortion and the achievement of a maximum metric value - i.e. orthophotomaps. As of 1999, Very High Resolution Satellite imaging, such as Ikonos and QuickBird, has made it possible to generate orthophotomaps in large scales. Two basic paths for applying corrections are available in satellite Photogrammetry. One involves a polynomial description where coefficients for the correction process are delivered with the image. The second takes advantage of typical Photogrammetry dependencies described by the co-linearity condition. Literature provides many varied and original approaches to this problem. This article presents a strict model as developed by the authors. It is based on the co-linearity equation as a function of time, which describes the dependence between the surface of the Earth and its imagery using parameters characterizing the position of the sensor in orbit as well as the placement of the orbit in the geocentric coordinate system. Research aimed at the practical verification of the developed model as well as the specification of the minimal number of ground control points necessary for the process of orthorectification of Ikonos and QuickBird images is presently underway at the Institute of Photogrammetry and Cartography of the Warsaw University of Technology. The authors of the article discuss the basic steps for developing the algorithm and present the first results received with respect to possibilities provided by similar models developed by Dr. K. Jakobsen and Dr. T. Toutin.
PL
Zdjęcia radarowe systemu TerraSAR-X (mikrofalowe pasmo X – ok. 3cm) są dostępne w Polsce od kilku miesięcy w ramach promocyjnej kampanii firmy Infoterra GmbH oraz w ramach projektów badawczych wspieranych przez niemiecką agencję kosmiczną DLR. W pracy przedstawiono zdjęcia zarejestrowane 11-10-2007r, w trybie „Spotlight”, w rozdzielczości geometrycznej ok. 3m, o podwójnej polaryzacji: VV oraz HH, dla obszaru miasta Olsztyna i okolic. Dla tego samego obszaru, zostały również zarejestrowane w dniu 21-09-2007 zdjęcia satelitarne IKONOS o rozdzielczości 1m w trybie panchromatycznym, oraz 4 m w trybie wielospektralnym. Badana była komplementarność obu sensorów w zakresie tematycznej i topograficznej interpretacji treści tych obrazów na terenach zurbanizowanych. Analizowano możliwości identyfikacji budynków na podstawie wielospektralnych zdjęć Ikonos o podwyższonej rozdzielczości geometrycznej (panmerged) oraz po połączeniu tych obrazów z obrazami TerraSAR-X. Autorzy poszukiwali odpowiedzi na pytanie o wartość interpretacyjną tego typu obrazów TSX i jej ograniczenia w rozpoznaniu struktury terenów zabudowanych w stosunku do zdjęć wysokorozdzielczych Ikonos. Wyniki wskazują, że analizowany produkt TSX/Spotlight o badanych parametrach nie spełnił oczekiwań fotointerpretacyjnych w zakresie stawianym w pracy.
EN
TerraSAR_X radar images are now available to scientific groups in Europe and Poland in the framework of Infoterra’s GmbH promotional campaign and through DLR’s research proposals. The paper focuses on the use of TSX / Spotlight mode image, dual polarization VV/ HH acquired on 11 October 2007 over the urban area of Olsztyn in Poland. The same area was covered by an optical VHR Ikonos image taken on 21 September 2007. The complementarity of both sensors was studied in relation to visual identification and mapping of buildings. The aim of this study was to evaluate the suitability of the TSX image parameters for this task. The results showed the image parameters (RE, dual pol., spot 094) were not particularly adequate to the needs and failed to meet the photointerpreters' requirements.
PL
W pracy oceniono przydatność obrazów satelitarnych o bardzo dużej rozdzielczości w aspekcie geometrycznym oraz zawartości ich treści do tworzenia baz danych topograficznych. Przedstawiono geometryczne podstawy obrazów QuickBird i Ikonos oraz opisano ich specyficzne cechy. Przeanalizowano wpływ wychylenia kamery i rzeźby terenu na parametry użytkowe obrazów o bardzo dużej rozdzielczości. Podano definicje geometryczne procesów opisujących tworzenie obrazów. Pozwolily one na ujednolicenie powszechnie wykorzystywanych opisów matematycznych modeli korekcyjnych. Przedstawiono zarazem własne propozycje opisu relacji geometrycznych w modelu wykorzystującym warunek kolinearnosci. W części praktycznej zaprojektowano pola testowe, które wykorzystano w prowadzonych badaniach. W analizach dotyczących geometrii obrazów satelitarnych uwzględniono wpływ danego typu modelu korekcyjnego, jakości numerycznego modelu terenu, liczby fotopunktów i kąta wychylenia układu optycznego. Dokonano analizy porównawczej geometrii obrazów QuickBird i Ikonos przy zadbaniu o identyczne warunki prowadzonych prac eksperymentalnych. Wykorzystując ocenę możliwości geometrii testowanych obrazów o bardzo dużej rozdzielczości, przeprowadzono kompleksowe analizy tworzenia wektorowej bazy danych topograficznych. Oceniono zasób treści obrazów pochodzących z sensorów. Przeprowadzono analizy statystyczne otrzymanych wyników i porównano je z podobnymi, ale pozyskanymi ze zdjęć lotniczych, oraz typowymi wektorowymi produktami pozyskanymi w warunkach produkcyjnych. Przedstawiono możliwości tworzenia i aktualizacji warstwy danych wektorowych TOPO w standardzie Baz Danych Topograficznych (TBD) na podstawie obrazów o bardzo dużej rozdzielczości. W rozprawie oceniono potencjał kartograficzny obrazów QuickBird i Ikonos, tj. ich możliwości geometrycznych i zasób treści, na potrzeby pozyskiwania danych wektorowych baz topograficznych na poziomie dokładności 1:10000 na przykładzie standardu TOPO z TBD i udowodniono ich przydatność do tych celów. Uzyskane wyniki pozwoliły potwierdzić tezę, że obrazy satelitarne o bardzo dużej rozdzielczości (Ikonos i QuickBird) mogą być wiarygodnym źródłem informacji przy zakładaniu i aktualizowaniu baz danych topograficznych o dokładności sytuacyjnej i zawartości treści odpowiadającej mapie topograficznej w skali 1:10000 (TBD).
EN
In this monographic study one evaluated the usefulness of Very High Resolution Satellite (VHRS) images in their geometrical aspect and their content, for the creation of Topographic Databases. Presented herein are the geometrical foundations of images from QuickBird and Ikonos and their specific characteristics. One has also analyzed the influence of camera deflection and land relief on the usable parameters of Very High Resolution Satellite Images. The geometrical definitions of these processes describing creation of images have also been provided. This process enables for unification of commonly used mathematical equations for adjustment models. One has also presented our own proposals for geometrical relations in the model which takes advantage of collinearity equations. In the practical part, specifically designed test fields were selected and used throughout this research. In the analysis regarding the geometry of satellite images, one took into consideration the influence of a given type of correction model, quality of Digital Terrain Model, number of Ground Control Points and angle of optical system deflection. A full and detailed comparative analysis has also been executed for the geometry resulting from QuickBird and Ikonos images, providing at the same time identical conditions for conducted experimental works. While evaluating the capacity of the geometry of very high resolution satellite images being tested, one conducted comprehensive analysis of the creation of the vector topographic database. An evaluation of the contents of images coming from these sensors also took place within this study. One also applied statistical analysis of the results obtained and compared the same with the similar results obtained from aerial photographs and with the typical vector products achieved in production environment. Presented herein is the capacity for creation and updating of the TOPO layer vector data in standard of Topographic Data Base (TBD) on the basis of very high resolution satellite images. In this study one evaluated the cartographic potential of images from QuickBird and Ikonos (i.e. their geometrical potential and contents in order to obtain vectorial topographic data bases of the accuracy level 1:10000), taking as an example using the TOPO standard from TBD, and demonstrated their usefulness for these very purposes. Obtained results proved the thesis that Very High Resolution Satellite Images (Ikonos and QuickBird) may constitute a reliable source of information for establishment and update of Topographic Databases of situational and contents accuracy corresponding to a topographic map of scale 1:10000 (TBD).
PL
Technologie teledetekcyjne oraz systemy GIS osiągnęły obecnie poziom rozwoju umożliwiający pełna implementacje automatycznych metod klasyfikacji oraz procesów kontroli i aktualizacji zasobów kartograficznych będących w posiadaniu administracji publicznej. Dane teledetekcyjne pozyskiwane nowoczesnymi metodami takimi jak: lotnicze kamery cyfrowe, skanery hiperspektralne, LiDAR badz VHRS - pozwalają na poprawne skonstruowanie procesu wspomagania podejmowania decyzji na poziomie lokalnym i regionalnym takich jak np. miejscowe plany zagospodarowania przestrzennego. Ogromne zbiory danych (np. LiDAR, VHRS) muszą być coraz częściej poddawane automatycznym procesom ich przetwarzania. Obiektowo zorientowana analiza obrazu (ang. Object Based Image Analysis; akronim: GEOBIA) - zwana potocznie klasyfikacja obiektowa, wykorzystuje zaawansowane algorytmy segmentacji rastra. Rozstrzygają one o liczbie generowanych obiektów na podstawie wartości jaskrawości piksela oraz „właściwości geometrycznych” (np. kształtu, grupowania się pikseli w homogeniczne obiekty, zwartości, etc). W kolejnych krokach obiekty te są klasyfikowane na podstawie licznych zależności i właściwości, jak np. parametru homogeniczności czy stosunku długości granic do powierzchni (wykrywanie krawędzi, budynków, działek etc). Klasyfikacja obiektowa może przyjąć strukturę hierarchiczna, to znaczy raz sklasyfikowane obiekty mogą posłużyć do stworzenia nowego wyższego hierarchicznie poziomu. Taka metodyka pozwala na przygotowanie scenariuszy postepowania klasyfikacyjnego zapisywanych do plików zwanych protokołami w oprogramowaniu DEFNIENS. Nowatorskie podejście do kwestii klasyfikacji obrazu bez potrzeby wykorzystywania pól treningowych zostało już potwierdzone wieloma projektami naukowymi i ich wdrożeniami (Wężyk, de Kok, 2005; de Kok, Wężyk, 2006). W prezentowanej pracy do przeprowadzenia klasyfikacji wykorzystano 2 sceny IKONOS z dnia 25.06.2005 roku (łączny obszar 194,7 km2) oraz 1 scenę QuickBird z dnia 07.09.2006 roku (167,7 km2). Prace zostały zlecone przez Biuro Planowania Przestrzennego UM Krakowa w listopadzie 2006 roku. Obrazy VHRS poddano ortorektyfikacji (Aplication Master 5.0, Inpho) w oparciu o współczynniki RPC ale także punkty dostosowania GCP pozyskane z ortofotomap Phare 2001 oraz NMT przekazanego przez BPP UMK (Wężyk et al., 2006). Do analizy obrazów VHRS wykorzystano kanał panchromatyczny (PAN) oraz wielospektralne (MS) zakresy promieniowania. Wstępne przetwarzanie kanałów PAN polegało na zastosowaniu filtrów krawędziowych (np. Lee Sigma), w wyniku działania których otrzymano tzw. obrazy pochodne wykorzystane w procesie segmentacji. Inne obrazy biorące udział w tym złożonym procesie składającym się z 11 kroków to: poszczególne kanały MS (Blue, Green, Red, NIR), dla których wykonano analizę głównych składowych (ang. Principal Component Analysis), mapa ewidencyjna (obraz rastrowy) wykorzystywana w projekcie kartowania zieleni rzeczywistej Krakowa (służąca głównie klasyfikacji budynków przy wykorzystaniu PC3), rastrowa warstwa sieci dróg pochodząca z wektoryzacji ekranowej VHRS i z map ewidencyjnych. W toku uzgodnień z BPP UMK podjęto decyzje o przyjęciu dwóch poziomów hierarchicznych klas pokrycia terenu. Poziom 1 składał się z 9-ciu klas zajmujących odpowiednio: tereny zainwestowane – 17,42%, zieleń wysoka – 24,99%, zieleń niska – 44,31%, zieleń terenów sportowych oraz ogródków działkowych – 1,39%, zbiorniki wodne i rzeki – 1,94%, infrastruktura drogowa – 3,48%, hałdy + wysypiska + odsłonięta gleba – 0,84%, grunty orne i uprawy – 5,35% oraz cień – 0,28% obszaru badan. Trzy klasy poziomu 1, tj.: tereny zainwestowane, zieleń niska i zieleń wysoka) zdecydowano się zaprezentować na wyższym – 2 poziomie szczegółowości. Wraz z pozostałymi klasami poziom ten składał się łącznie z 22 klas. Osiągnięte rezultaty potwierdziły szerokie możliwości stosowania automatycznych metod OBIA bazujących na VHRS i innych informacjach pochodzących z systemów GIS oraz z zasobów geodezyjnokartograficznych w celu ich aktualizacji.
EN
Recent developments in Remote Sensing and GIS have reached maturity which allows to implement the research results into standardized process flows for updating and checking the municipality cadastral information. The database containing the city cadastre already handles data fusion methods itself. Available information considerably enhance information extraction from new data collections with high quality sensors such as LiDAR, photogrammetrical imagery and VHRS data. Huge amounts of available data must be processed in sequences to keep them handable. Transferable protocols for automatic handling of VHRS data can now be put into a full production process to assist the workflow of other image data from airborne platforms and integrate these GIS output into further cadastral GIS analysis. The data fusion within this project allows a highly detailed description of the city status-quo and the basis for change detection. Further these results are besides a very important archival inventory also a basis for decision support, now and in the future. The whole workflow was of a chain of previous research projects which were put into a commercial workflow. This study shows an experience report on, how the product chain was built-up and what type of products were delivered to the municipality of Krakow (Poland).
PL
Coraz częściej wykorzystuje sie realistyczne wizualizacje miast obejmujące trzy wymiary w wielu aplikacjach z dziedziny m. in. planowania przestrzennego, telekomunikacji czy bezpieczeństwa publicznego. W niniejszym artykule autor przeanalizował ogólne trendy panujące na świecie dotyczące budowy modeli 3D. Przedstawił rodzaje danych, które mogą być wykorzystane do generowania trójwymiarowych modeli miast. Przeanalizował m.in.: zdjęcia lotnicze i satelitarne, bazę danych topograficznych (TBD), numeryczne modele terenu oraz dane pochodzące ze skaningu laserowego. Opisane zostały możliwości wykorzystania programów ArcGIS, Erdas Imagine/LPS, Cyber City Modeller i Terrain View do tworzenia i prezentowania modeli miast 3D. Zostały również zaprezentowane wyniki eksperymentu dotyczącego budowania trójwymiarowego modelu miasta opartego na stereo-parach zdjęć satelitarnych z satelity IKONOS dla aglomeracji krakowskiej. Autor przedstawił praktyczne zastosowanie trójwymiarowych modeli miast w turystce i obronności
EN
The need for photo realistic visualisation of 3D City Models is growing for many applications like urban planning, telecommunication planning and homeland security. Author of the present article analyses the general trends relating to 3D City Models. The author has described data types of data (aerial and satellite images, topographic data base, digital surface models, airborne laser data) and software for generation of 3D City Models (ArcGIS, Erdas Imagine/LPS, Cyber City Modeller and Terrain View). Also, the results of experimental generation of the three-dimensional model of Krakow City are presented. This model has been generated with the aid of stereo satellite images from IKONOS. The author has shown the real benefits of three-dimensional city models for tourism and homeland security.
PL
W publikacji przedstawiono wyniki badan związanych z integracja danych spektralnych o niższej rozdzielczości przestrzennej z obrazami panchromatycznymi o wyższej rozdzielczości przestrzennej. Analizy przeprowadzono na danych Ikonos. Testowano piec metod integracji danych, każda w kilku wariantach. Celem badan był wybór optymalnej metody, zapewniający uzyskanie obrazu wzmocnionego przestrzennie przy jak najwierniejszym zachowaniu właściwości spektralnych. Zaproponowano niestandardowa metodykę, a mianowicie przeprowadzenie wstępnych testów scalania danych obrazowych na materiałach zdegradowanych przestrzennie w taki sposób, _e obrazami referencyjnymi stały się oryginalne kanały spektralne. Podejście takie umożliwiło porównanie wprost obrazów po integracji z obrazami oryginalnymi, przez co możliwa była ocena faktycznych wielkości zniekształcenia i wzmocnienia obrazów syntetycznych, jakie powstają przez stosowanie różnych formuł. Najlepsze parametry formalne i wysokie walory interpretacyjne scalonych obrazów otrzymano stosując metodę HPF. Standardowa metoda integracji – IHS - uzyskała najgorsze wyniki spośród pięciu wykorzystanych metod.
EN
The article presents the results of integrating spectral images of lower resolution with higher resolution panchromatic images. The analysis was performed on Ikonos images. Five different methods of integration were applied, each in many variants. The main aim of the research was to find an optimal method to guarantee obtaining pan-sharpened images with preservation of the features of spectral images. Unusual methodology was applied. Deliberately degraded panchromatic images were used in an additional testing stage where the original spectral images became reference ones. This allowed a comparison between synthetic and original images and showed the factual distortion and enhancement of spectral images while applying various integration formulas. The HPF method provided the best formal indices and high interpretation properties of the fused images. The standard IHS method of integration gave the poorest results in performed tests.
PL
Przez 8 ostatnich lat funkcjonowania systemów satelitarnych o wysokiej rozdzielczości można było zaobserwować duże zainteresowanie różnymi możliwościami wykorzystania zdjęć satelitarnych w wielu dziedzinach. Początkowo główne badania skupiały sie na wykorzystywaniu pojedynczych scen. Wysoko-rozdzielcze systemy satelitarne dzięki swoim możliwościom manewrowania pozwalają na pozyskiwanie nie tylko pojedynczych scen ale równie_ dużych bloków zdjęć satelitarnych (długich pasów lub kilku zdjęć o wspólnym pokryciu). Jednocześnie ceny zdjęć satelitarnych z systemów wysoko-rozdzielczych zaczęły spadać, a dystrybutorzy posiadają coraz większe zbiory zdjęć archiwalnych. Te dwa aspekty spowodowały zwiększone zainteresowanie zdjęciami w postaci bloków. Kluczowym zadaniem podczas pozyskiwania zdjęć satelitarnych jest zaprojektowanie sesji pozyskiwania zdjęć podczas przejścia satelity w zasięgu stacji nadawczo-odbiorczej. Pozyskiwanie małych obszarów oddalonych od siebie wymaga zmiany celowania systemu optycznego satelity, co zabiera bardzo cenny czas, za który operatorzy musza równie_ zapłacić. Niniejszy artykuł wprowadzi czytelnika w tematykę bloków zdjęć pozyskiwanych z systemów satelitarnych. Przedstawi proces projektowania i pozyskiwania pojedynczych zdjęć oraz bloków zdjęć satelitarnych podczas przejścia satelity w obszarze stożka stacji odbiorczo-nadawczej. Zostanie opisane praktyczne wykorzystanie bloków zdjęć satelitarnych w Polsce, gdzie wymagane jest pokrycie zdjęciami dużych obszarów.
EN
For the last 8 years of the presence of very high resolution satellite systems (VHRS) there has been a number of various opportunities discovered for using satellite images in numerous applications. The majority of research work has focused on using a single satellite image. VHRS, thanks to their agility capability, allow not only to provide single image, but also blocks of satellite images (long strip or several strips with small amount of overlapping). At the same time, the prices of satellite images have started to drop, and collection of archived imagery has been increasing. These two aspects have increased the interest in blocks of satellite images. Image collection planning is the key task during imaging sessions in a single passage (single orbit). The collection of small area isn’t very efficient during slew times. In slew time, the satellite cannot take any image. This paper is intended to give an overview of the collection of blocks of satellite images and to introduce planning system for images collection during a particular spacecraft pass. The author has also described a few applications requiring the use of satellite image blocks.
PL
W artykule zamieszczono rezultaty badań, których celem było określenie dokładności korekcji geometrycznej oraz procesu ortorektyfikacji cyfrowych wysokorozdzielczych zobrazowań satelitarnych IKONOS i QuickBird na tle wyników opracowań fotogrametrycznych bloków zdjęć lotniczych wykonanych kamerami z rejestracją środków rzutów metodą dGPS. Opracowano metodykę korekcji geometrycznej zobrazowań IKONOS i QuickBird z wykorzystaniem zaimplementowanych w oprogramowaniach komercyjnych modeli matematycznych wraz z uwzględnieniem metodyki projektowania punktów osnowy fotogrametrycznej. Dokładność korekcji geometrycznej zmierzona na punktach kontrolnych wynosiła 0,4 piksela obrazu źródłowego. Stwierdzono, że ortofotomapy cyfrowe z danych IKONOS należy generować z pikselem 1 m, zaś z danych QuickBird z pikselem 0,5 m. Biorąc pod uwagę walory geometryczne i interpretacyjne ortofotomap, stwierdzono, że ortofotomapy będące wynikiem przetworzenia obrazów źródłowych IKONOS odpowiadają dokładności mapy topograficznej w skali 1:10 000, podczas gdy ortofotomapy będące wynikiem przetworzenia obrazów źródłowych QuickBird odpowiadają dokładności mapy topograficznej w skali 1:5000. Podano zalety i ograniczenia wysokorozdzielczych zobrazowań satelitarnych w porównaniu z klasycznymi zdjęciami fotogrametrycznymi.
EN
The article presents the results of the studies on the accuracy of geometric correction and generating digital orthophotomaps of high-resolution satellite images IKONOS and QuickBird compared to the results of photogrammetric blocks of airborne photographs taken with cameras allowing the registration of the centres of projection with the dGPS method. The accuracies of geometric corrections of IKONOS and QuickBird images were examined with different methods and the minimal number of photopoints was determined for them. The accuracy on control points was 0.4 pixel. Digital orthophotomaps from IKONOS data can be generated with 1 m pixel, which corresponds to the accuracy of maps in 1:10 000 scale, and QuickBird data can be generated with the accuracy of 0.5 m pixel, which corresponds to the scale 1:5000. Advantages and limitations of high-resolution satellite images were presented compared to classical photogrammetric pictures.
PL
W Polsce rozpoczęto opracowanie Bazy Danych Topograficznych (TBD) o dokładności i zasobie treści odpowiadającej tradycyjnej mapie topograficznej w skali 1:10 000. Bazę taką tworzy się w oparciu o ortofotomapę z pikselem 0.5 m wytworzoną ze zdjęć lotniczych w skali 1:26 000. Tempo opracowania tej bazy nie jest satysfakcjonujące, a koszty są duże, szczególnie dotyczy to b.d. wektorowych. Rozpatruje się możliwość opracowania b.d. wektorowych TBD o zubożonej treści na bazie obrazów satelitarnych VHRS. Sprzyja takiemu pomysłowi uruchomione Centrum Operacji Regionalnych (ROC) dla odbioru i przetwarzania danych Ikonos. We współpracy GUGiK i Politechniki Warszawskiej zrealizowany został projekt badawczy dotyczący oceny możliwości opracowania wektorowej b.d. topograficznych w oparciu o dane satelitarne. Część eksperymentalna została poprzedzona analizą potencjału kartograficznego obrazów satelitarnych, rozumianego jako suma potencjału pomiarowego i interpretacyjnego. W kontekście możliwości opracowania baz danych topograficznych krytycznym okazuje się ograniczony zasób treści obrazów satelitarnych a dopiero w drugiej kolejności ich możliwości pomiarowe. LITERATURa przedmiotu obfituje w liczne przykłady badania geometrii takich obrazów, zadecydowanie mniej jest doniesień o wiarygodnych badaniach zasobu ich treści. Na trzech obszarach testowych pokrytych obrazami QuickBird, Ikonos i EROS wygenerowano ortofotomapy satelitarne. Na ich bazie pozyskano dane wektorowe w strukturze TBD. Wyniki tych opracowań poddano analizie pod kątem zawartości treści i jej zgodności z TBD. Stwierdzono, że dla większości klas obiektów b.d. TBD obrazy QuickBird i Ikonos nie ustępują, lub niewiele ustępują tradycyjnym zdjęciom lotniczym w skali 1:26 000. Obrazy EROS nie są przydatne do tego celu. W rezultacie badań powstał nowy standard (TBD II), o nieco zubożonej treści, ale przy zachowaniu wymaganej dokładności lokalizacyjnej, możliwy do opracowania z obrazów VHRS. Może on znaleźć zastosowanie w obszarach mniej zurbanizowanych. Ocenia się, że pozwoli to przyśpieszyć i obniżyć koszty opracowania TBD. Zaproponowany standard w formie wdrożenia został sprawdzony w warunkach produkcyjnych. Analiza techniczna i ekonomiczna zrealizowanych prac wdrożeniowych potwierdziła przydatność obrazów satelitarnych do zakładania b.d. wektorowych TBD.
EN
In Poland, a Topographic Data Base (TBD) has been constructed with the accuracy and contents equivalent to a traditional 1:10 000 scale topographic map. Such a database was based on an orthophotomap with 0.5 m pixels prepared from aerial photographs on a scale of 1:26 000. The pace of development of this database is insufficient and the costs are substantial. This is especially true in the case of vectorial data bases. An option to create vectorial data bases TBD of reduced contents based upon VHRS satellite images is under consideration. The Regional Operations Center (ROC) opened for receipt and processing of Ikonos data is in favor of this option. In collaboration with GUGiK and Warsaw Technical University, a research project regarding evaluation of an opportunity to prepare a vectorial topographic database based on satellite data has been undertaken. Its experimental part was preceded by analysis of the cartographic potential of satellite images understood as the sum of the measurement and interpretational potential. In the context of the opportunity to create topographic databases, limited contents of satellite images is absolutely critical, and only then can their measurement potential be assessed. Professional literature offers numerous examples of studies of the geometry of such images, but it says much less about reliable research of their contents. In three testing areas covered by satellite images from QuickBird, Ikonos and EROS, satellite orthophotomaps were generated. Based on these maps, vectorial data in TBD structure was produced. The data were analyzed in terms of their content and conformity with TBD. It was found that in the majority of object classes of the TBD database, QuickBird and Ikonos images are almost equivalent to, or just slightly worse than, traditional 1:26 000 scale aerial photographs. EROS images are not useful for this particular purpose. As a result of these investigations, a new standard (TBD II) was established, which is of slightly poorer contents but which satisfies the required location accuracy, thus enabling it for VHRS images. It may also be applied to less urbanized areas. One estimates that this standard will facilitate elaboration of the TBD by making it much faster and less expensive. At the implementation stage, the suggested standard was tested in a production environment. Technical and economic analyses of the executed implementation works showed that the satellite images are very useful for establishment of TBD vectorial data bases.
PL
Prezentowane prace wykonano w ramach projektu zainicjowanego przez Przedsiębiorstwo Geodezyjno-Informatyczne COMPASS S.A. w Krakowie i zrealizowanego wspólnie z Zakładem Fotogrametrii i Informatyki Teledetekcyjnej AGH. Celem przeprowadzonych badań było: porównanie rezultatów aerotriangulacji uzyskanych z zastosowaniem metody parametrycznej i metody opartej na wykorzystaniu dostarczanych wraz z obrazami współczynników RPC, ocena parametrów dokładnościowych produktu końcowego – ortofotomapy, ocena wpływu liczby punktów dostosowania na rezultaty uzyskiwane z wykorzystaniem obu metod, porównanie działania oprogramowania firm Intergraph (ISDM) i PCI Geomatics (Geomatica) dla metody RPC, ocena możliwości wykorzystania w procesie ortorektyfikacji wysokorozdzielczych zobrazowań satelitarnych modelu wysokościowego DTED Level 2. Wykorzystano posiadające obszar wspólnego pokrycia sceny satelity Ikonos obejmujące część miasta Krakowa i przyległe tereny o charakterze podmiejskim i wiejskim. Dla metody parametrycznej przetestowano warianty z wykorzystaniem dla każdej ze scen dziewięciu, dziesięciu i jedenastu punktów dostosowania. Dla metody RPC - dwóch, czterech lub dziewięciu fotopunktów dla każdej ze scen. Uzyskany błąd średni położenia punktu na ortofotomapie nie przekraczał 1.5 m. Lepsze rezultaty uzyskiwano rozmieszczając punkty dostosowania w całym zakresie profilu wysokościowego zobrazowanego terenu. Zbliżone wyniki otrzymano stosując obydwie metody i oba testowane programy. Zastosowanie modelu DTED nie powodowało pogorszenia parametrów dokładnościowych wynikowej ortofotomapy w porównaniu z ortofotomapą uzyskaną z wykorzystaniem modelu fotogrametrycznego.
EN
This paper presents the results of the research conducted by the Geodesy-Computer Science Joint-Stock Company COMPASS and the AGH University of Science and Technology Department of Photogrammetry and Remote Sensing Information. Several goals were intended to be achieved: comparison of the adjustment results obtained by implementation of orbital model and RPC coefficients, an accuracy evaluation of the generated orthoimages, assessment of the used Ground Control Points (GCPs) number influence on geometric quality of orthophotomaps, comparison of Intergraph and PCI Geomatics software for high-resolution satellite orthophotomap generation with RPC coefficients, evaluation of DTED Level 2 Digital Terrain Model applicability to high-resolution satellite orthophotomap generation. Two overlapping panchromatic Ikonos images of Cracow and its suburban areas and villages in the neighbourhood were orthorectified. Mainly GPS measured GCPs were used with some additional points and all Control Points were measured on an 1:5 000 scale aerial orthophotomap. Elevation data were obtained with precise a Digital Terrain Model generated from aerial photos on a scale of 1:13 000. In the case of the orbital model, the results achieved with 9, 10 and 11 GCPs used for each scene were compared. For RPC case 2, 4 and 9 points for each image were used. In both cases, tests were conducted for separate scenes and with tie points measurements. An accuracy assessment of the generated orthoimages was done based on 22 control points (11 for each scene) not used for geometric correction. The orthoimages generated with both tested methods had comparable geometric accuracy, with an rms XZ error below 1.5 meters, but in the case of the RPC method a lower number of GCPs was needed. In both cases, better results were achieved if the GCPs used had been chosen within the full elevation range of the scenes. Increasing the GCPs number did not increase orthoimage accuracy. The results obtained using the tested software did not significantly differ. DTED Level 2 application instead of precise DTM did not cause a decrease in the geometric accuracy of the generated orthoimages.
PL
Praca miała na celu kompleksowe przebadane stereopary Ikonos dla celów automatycznej generacji modeli wysokościowych. Wykorzystano stereoparę przedstawiającą miasto Kraków i okolice; pracowano na oprogramowaniu Leica Photogrammetry Suit. Panchromatyczna stereopara o rozmiarze 11×22 kilometry posiadała terenowy wymiar piksela 0.80 m. Do orientacji stereopary wykorzystano dostarczone przez dystrybutora współczynniki RPC oraz naturalne fotopunkty pomierzone w technologii GPS. Analiza korekcji współczynników RPC wielomianami stopnia pierwszego, drugiego i trzeciego wykazała, że dla osiągnięcia dokładności subpikselowych wystarczający jest wielomian pierwszego stopnia. Osiągnięto następujące dokładność orientacji na 15 fotopunktach: Mx = 0.6 m; My = 0.4 m; Mz = 0.6 m; natomiast na 14 punktach kontrolnych: Mx = 0.6 m; My = 0.4 m; Mz = 0.8 m. Wykazano, że stosowanie większej ilości fotopunktów niż 9 nie prowadzi do znaczącej poprawy wyników orientacji a wykorzystanie wielomianów korygujących wyższych stopni może prowadzić do zniekształceń. W celu stworzenia NMPT wykonano automatyczną korelację (matching) w siatce 10 m. Analizę dokładności przeprowadzono na 46 punktach GPS i otrzymano średni błąd kwadratowy wysokości Mz = 1.6 m. Na potrzeby wygenerowania NMT przeprowadzono korelację w siatce 50 m, która pozwoliła na stworzenie NMT o dokładności Mz = 1.7 m. Na podstawie NMT przeprowadzono ortorektyfikację jednego z obrazów stereopary i stworzono ortofotomapę o pikselu 0.80 m. Dokładność sprawdzono na 24 fotopunktach GPS i otrzymano błędy: Mx = 0.93 m; My = 0.99 m. Eksperyment został przeprowadzony w Instytucie Fotogrametrii i Teledetekcji Politechniki Wiedeńskiej oraz w Instytucie Fotogrametrii i Kartografii Politechniki Warszawskiej.
EN
The main goal of the study was to investigate the potential of height model generation from very high resolution satellite images in Leica Photogrammetry Suite. The work was conducted at the Institute of Photogrammetry and Remote Sensing of the Vienna University of Technology and at the Institute of Photogrammetry and Cartography of the Warsaw University of Technology. The experiment was based on an Ikonos panchromatic stereo image with a resolution of 0.80 m and the size of 11×22 km. Orientation was done with RPC coefficients delivered by the distributor and photopoints measured in GPS technology. An analysis of RPC’s systematic errors correction using first, second and third order polynomials showed that for subpixel quality, a first order polynomial is sufficient. The achieved orientation accuracy was: on 15 control points – RMSx = 0.6 m; RMSy = 0.4 m; RMSz = 0.6 m, on 14 check points – RMSx = 0.6 m; RMSy = 0.4 m; RMSz = 0.8 m. It was shown that during work on the Polish normal heights system, if a polynomial of at least 1 order is not used, the results could be slightly degraded compared to work on an ellipsoid height system. Using more than 9 control points brings only slightly improvement to the stereo image’s orientation accuracy. RPC correction with polynomials of higher orders than the first is not advised, especially if a dense grid of control points is not assured. In order to generate DSM, matching was done which resulted in over 900 000 points. Accuracy analyses was done on 46 GPS points and gave the result of RMSz = 1.6 m. Points were placed mainly on roads, so this kind of analysis is reliable only for ground objects. For DTM generation, matching was done on a 50 m grid and manual filtration in LPS was conducted, which resulted in an accuracy of 1.7 m. The generated DTM and one of the images was used in orthorectification. Accuracy assessment of the generated ortho was done on 24 GPS points and gave the following results: RMSx = 0.93 m; RMSy = 0.99 m. In the experiment, the use of SCOP++ software for matched points filtration was investigated.The study was based on a dense 3 m grid point cloud. Although designed for laser scanning data, a robust filtering algorithm gave good results, even in the highly urban areas of Cracow.
14
EN
Maintaining the Terrain Analysis System (TERAS) is the principal task of military geographic service. The system.s main component is Terrain Database. It is a huge set of raster, vector and attribute data. Military analysis of this input data should define: cross.country mobility, cover and concealment, line of sight, intelligence reconnaissance elements. This paper describes our experiences in the analysis of image data for military purposes. The analyzed dataset contains panchromatic and multispectral satellite scene: LANDSAT, SPOT, IRS, IKONOS and aerial photos. Different terrain and spectral resolution enables to distinguish from the imagery different quantitative and qualitative features. So, it is also an attempt to show the correlation between resolution and extraction of different kind of information. The basic military product is terrain evaluation map. It integrates information about military elements of geographic environment. Terrain database contains thematic layer data, for example: vegetation, hydrography, soils, relief etc. However, if we consider military aspects, this data could be grouped in three products: DEM, landcover map, soil map. Development of acquisition and processing techniques allows to create such maps from imagery. Is it possible to create terrain analysis subsystem only from digital imagery? This analysis tries to respond to this question. Such a subsystem would enable military terrain evaluation even if we have no others data. But first of all, we must gather the data and elaborate analysis and extraction algorithms. The main tasks are: optimal spectral composition analysis, texture analysis and other methods of processing, continuous-to-thematic raster layer processing, advanced classifying procedures, conditional processing of aggregated data, proper ungrouping and composing output thematic layer. Imagery acquisition systems, especially satellite ones are constantly developed, and spectral and terrain resolution is increased. Therefore, we can obtain more and more information and we should search for new processing methods. The imagery data is especially valuable for military use of environment, because it helps to achieve dominance on the battlefield.
EN
Maintaining the Terrain Analysis System (TERAS) is the principal task of military geographic service. The system.s main component is Terrain Database. It is a huge set of raster, vector and attribute data. Military analysis of this input data should define: .cross.country mobility, . cover and concealment, line of sight, intelligence reconnaissance elements. This paper describes our experiences in the analysis of image data for military purposes. The analyzed dataset contains panchromatic and multispectral satellite scene: LANDSAT, SPOT, IRS, IKONOS and aerial photos. Different terrain and spectral resolution enables to distinguish from the imagery different quantitative and qualitative features. So, it is also an attempt to show the correlation between resolution and extraction of different kind of information. The basic military product is terrain evaluation map. It integrates information about military elements of geographic environment. Terrain database contains thematic layer data, for example: vegetation, hydrography, soils, relief etc. However, if we consider military aspects, this data could be grouped in three products: DEM, landcover map, soil map. Development of acquisition and processing techniques allows to create such maps from imagery. Is it possible to create terrain analysis subsystem only from digital imagery? This analysis tries to respond to this question. Such a subsystem would enable military terrain evaluation even if we have no others data. But first of all, we must gather the data and elaborate analysis and extraction algorithms. The main tasks are: optimal spectral composition analysis, .texture analysis and other methods of processing, continuous-to-thematic raster layer processing, advanced classifying procedures, conditional processing of aggregated data, proper ungrouping and composing output thematic layer. Imagery acquisition systems, especially satellite ones are constantly developed, and spectral and terrain resolution is increased. Therefore, we can obtain more and more information and we should search for new processing methods. The imagery data is especially valuable for military use of environment, because it helps to achieve dominance on the battlefield.
PL
Artykuł przedstawia wyniki badań nad wykorzystaniem obrazów wysokiej rozdzielczości z satelity IKONOS-2 do szacowania ilości wody potrzebnej do nawadniania pól uprawnych znajdujących się w basenie hydrologicznym rzeki Pinios w Elii w północno-wschodniej części półwyspu Peloponeskiego w Grecji. Dane z IKONOS-2 pozwalają uzyskać takie produkty, jak wysokiej rozdzielczości mapy z rozmieszczeniem poszczególnych upraw z dokładnością do š 2 metrów. Oszacowanie zapotrzebowanie na wodę do nawadniania dla każdego rodzaju upraw oparto na wyznaczeniu ich obszaru. Jednakże do oceny zapotrzebowania na wodę w cyklu fenologicznym poszczególnych upraw potrzebne są długookresowe badania.
PL
Wysokorozdzielcze obrazy satelitarne są stosunkowo nowym źródłem danych fotogrametrycznych a możliwości ich wykorzystania dla różnorakich zadań w kraju nadal rozważane. Ortorektyfikacja takich obrazów jest najbardziej naturalnym sposobem przygotowania ich do potrzeb pomiarowych. Opanowanie technik i metodyki pozwalającej w sposób produkcyjny uzyskiwać wysokiej jakości ortoobrazy satelitarne jest podstawowym warunkiem powszechnego stosowania VHRS. System Ikonos jest wskazywany jako dający najlepsze wyniki ortorektyfikacji w tym segmencie. Jednym z programów umożliwiających jej wykonywanie jest PCI Geomatica. Zostaną tu w sposób ekspery,entalny porównane wyniki ortorektyfikacji obrazu Ikonos otrzymywane za pomocą tego programu. Przedstawione tu zestawienie ma na celu pomóc w wyborze odpowiedniej liczby fotopunktów i metody ortorektyfikacji
PL
W ostatnich latach ukazało się wiele publikacji dotyczących jakości geometrycznej obrazów satelitarnych systemów jednometrowych. Wielu badaczy przedstawia różne wyniki swoich opracowań w zależności od rodzaju technologii i jakości danych. Niniejsze opracowanie przedstawia wyniki badań wpływu danych inicjalnych na korekcję obrazu satelitarnego systemu Ikonos. Jako dane inicjalne autor rozumie odpowiednią liczbę fotopunktów niezbędnych do przeprowadzenia geometryzacji (ortorektyfikacji) scen satelitarnych oraz numeryczny model terenu. Przedstawione poniżej wyniki prac eksperymentalnych wskazują, że na jakość geometryczną obrazów wpływa rozkład fotopunktów na scenie oraz ich liczba, a także dokładność pozyskania NMT. W referacie zaprezentowane są wyniki poszczególnych etapów prac dla jednej sceny satelitarnej obejmującej obszar Parku Krajobrazowego Beskidu Śląskiego.
PL
Jako, że w Polsce pojawia się wiele ,, informacyjnego szum u " nt. możliwości ortorektyfikacji wysokorozdzielczych danych satelitarnych (ang. VHR data), autorzy pragną podzielić się z krajowym i międzynarodowym środowiskiem fotogram etrycznym wynikami sam odzielnie w ykonanych prac, związanych z całkowicie krajową produkcją ortofotomap satelitarnych, wykonanych dla ponad 3000 km- w roku 2002. Międzynarodowe publikacje dotyczące tej problematyki, pojawiały się ju ż na kilka lat przed wystrzeleniem systemów IKONOS, a później Quick Bird i często pojawiały się w nich spekulacje na temat spodziewanej dokładności opracowań ortofotomap. Już po wystrzeleniu satelity IKONOS pojawiła się inna fa la publikacji, dotyczących sam odzielnych prób ortorektyfikacji produktów Carterra GEO, które jednak nie mogły osiągnąć najlepszych wyników, wobec braku dostępu do modelu matematycznego sensora satelity IKONOS. (T.Toutin, Ph.Cheng, R.Kaczyński) - mimo prawidłowego podejścia matematycznego, stosującego do ortorektyfikacji model scisly (rational polynimial coefficiences). W tym okresie osiągane w yniki błędu, wyrażane w RM SE zawierały się z reguły w przedziale 3-4 m. Zastosowanie m odelu sensora satelity IKONOS, po raz pierwszy zaimplementowanego za zgodą SPAC EIMAGING Inc. przez firmę ERDAS, kolekcja scen dla Polski z odchyleniem od nadiru nie przekraczającym 18°, spełnienie rygorystycznych wymagań SPACE IMAGING Inc, co do dokładności pomiarów punktów kontrolnych (ang. GCPs.) przy użyciu techniki GPS, zastosowanie do procesu ortorektyfikacji scen Numerycznego Modelu Terenu, cechującego się dokładnością wyznaczenia wysokości rzędu 2-3 metrów - pozwoliło na produkcję ortofotomap, cechujących się wartością RMSE poniżej I metra. Ich produkcja zrealizowana została całkowicie przez zespól polski, Bałtyckiego Centrum Systemów Informacji Przestrzennej, dzięki logistycznem u i finansowem u wsparciu Grupy Kapitałowej TECHMEX S.A i otwartej postaw y Space Imaging Eurasia.
20
Content available Evaluation of panchromatic IKONOS data for mapping
EN
The results of assessment of the planimetric accuracy of 1-meter resolution panchromatic IKONOS data comparing to the topographic map in the scale 1:10,000 are presented. Low precision georeferenced Car terra Geo, 50 m CE90 product of test areas in China was orthorectified in IGiK using Image Station INTERGRAPH and InternationaI Imaging System PRISM VISTA software as well as software elaborated in Chinese Academy of Surveying and Mapping (CASM). Planimetric accuracy of IKONOS data after adjustment with the use of 5 GCP's (taken from the topomap) was: RMSEx = +/- 1.1m and RMSEy = +/- 1.4m. Planimetric accuracy calculated on 18 check points, the X, Y coordinates of which have been also taken from the topomap was: RMSEx = +/-3.5m and RMSEy= +/- 2.5 m. Planimetric accuracy of the orthophotomap generated using IKONOS data and calculated transformation parameters was: RMSEx = +/- 3.7 m and RMSEy = +/- 3.6 m. This accuracy is similar to the planimetric accuracy of the topographic map in the scale 1:10 000. Better accuracy can be achieved by measuring GCP's directly in the field with GPS technique instead of using topomaps. Nevertheless, Сarterra Geo product which is of the lowest horizontal precision out of the entire range of IKONOS products and also the cheapest, can be used for updating topomaps as well as for generating up-to-date digital basemap in modern Geographic Information Systems.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.