Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  IRLS
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Linear regression analysis has become a fundamental tool in experimental sciences. We propose a new method for parameter estimation in linear models. The 'Generalized Ordered Linear Regression with Regularization' (GOLRR) uses various loss functions (including the o-insensitive ones), ordered weighted averaging of the residuals, and regularization. The algorithm consists in solving a sequence of weighted quadratic minimization problems where the weights used for the next iteration depend not only on the values but also on the order of the model residuals obtained for the current iteration. Such regression problem may be transformed into the iterative reweighted least squares scenario. The conjugate gradient algorithm is used to minimize the proposed criterion function. Finally, numerical examples are given to demonstrate the validity of the method proposed.
EN
This paper introduces a new classifier design method based on regularized iteratively reweighted least squares criterion function. The proposed method uses various approximations of misclassification error, including: linear, sigmoidal, Huber and logarithmic. Using the represented theorem a kernel version of classifier design method is introduced. The conjugate gradient algorithm is used to minimize the proposed criterion function. Furthermore, .1-regularized kernel version of the classifier is introduced. In this case, the gradient projection is used to optimize the criterion function. Finally, an extensive experimental analysis on 14 benchmark datasets is given to demonstrate the validity of the introduced methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.