Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  IMRT
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Introduction: The purpose of this study was to determine the best normal tissue objective (NTO) values based on the dose distribution from brain tumor radiation therapy. Material and methods: The NTO is a constraint provided by Eclipse to limit the dose to normal tissues by steepening the dose gradient. The multitude of NTO setting combinations necessitates optimal NTO settings. The Eclipse supports manual and automatic NTOs. Fifteen patients were re-planned using NTO priorities of 1, 50, 100, 150, 200, and 500 in combination with dose fall-offs of 0.05, 0.1, 0.2, 0.3, 0.5, 1 and 5 mm-1. NTO distance to planning target volume (PTV), start dose, and end dose were 1 mm, 105%, and 60%, respectively, for all plans. In addition, planning without the NTO was arranged to find out its effect on planning. The prescription dose covered 95% of the PTV. Planning was evaluated using several indices: conformity index (CI), homogeneity index (HI), gradient index (GI), modified gradient index (mGI), comprehensive quality index (CQI), and monitor unit (MU). Differences among automatic NTO, manual NTO, and without NTO were evaluated using the Wilcoxon signed-rank test. Results: Comparisons obtained without and with manual NTO were: CI of 0.77 vs. 0.96 (p = 0.002), GI of 4.52 vs. 4.69 (p = 0.233), mGI of 4.93 vs. 3.95 (p = 0.001), HI of 1.10 vs. 1.10 (p = 0.330), and MU/cGy of 3.44 vs. 3.42 (p = 0.460). Planning without NTO produced a poor conformity index. Comparisons of automatic and manual NTOs were: CI of 0.92 vs. 0.96 (p = 0.035), GI of 5.25 vs. 4.69 (p = 0.253), mGI of 4.46 vs. 3.95 (p = 0.001), HI of 1.09 vs. 1.10 (p = 0.004), MU/cGy of 3.31 vs. 3.42 (p = 0.041). Conclusions: Based on these results, manual NTO with a priority of 100 and dose fall-off 0.5 mm-1 was optimal, as indicated by the high dose reduction in normal tissue.
EN
Aim: To conduct a study on the effect of random setup errors inpatient for dose delivery in Intensity Modulated Radiotherapy plans using Octavius 4D phantom. Materials and methods: 11 patients with cancer of H&N were selected for this study. An IMRT plan was created for each patient. The IMRT quality assurance plans were transferred to Mosaiq workstation in a linear accelerator. These plans were delivered at the reference treatment position. Subsequently, the QA plans were delivered on the Octavius 4D phantom after introducing errors in various translational and rotational directions. The setup inaccuracies introduced varied from 1 mm to 5 mm along X, Y. These setup uncertainties were then introduced along X and Y direction simultaneously in equal measures. Similarly, IMRT plans were delivered also after introducing roll and yaw rotation of 1, 2 and 3 degrees in phantom. The deviation of gamma indices at all these positions was analyzed with respect to the reference setup position. Results: The percentage of points passing the gamma acceptance criterion decrease as we increase the setup error. The change is found to be very insignificant with setup error up to 2 mm along X, Y or XY direction. Similarly, the rotational error of up to 3 degrees is found to be acceptable. Conclusions: Small setup (< 2 mm) correction in patients may not adversely affect the dose delivery. But an error of similar magnitude in 2 directions simultaneously has a much greater impact on IMRT dose delivery.
PL
Celem radioterapii jest dostarczenie zaplanowanej dawki promieniowania do targetu przy jednoczesnym zminimalizowaniu dawki deponowanej w narządach krytycznych. Istnieją przypadki, gdzie w planie leczenia jednego pacjenta uwzględniono kilka obszarów tarczowych (ang. Planning Target Volume – PTV). Jedną z możliwych technik napromieniania jest wtedy tzw. technika Simultaneous Integrated Boost (SIB). Polega ona na jednoczesnym napromienianiu różnymi dawkami więcej niż jednej objętości tarczowej. Ze względu na konieczność jednoczesnego podania dawek w kilku targetach otrzymują one dawkę różną od zleconej. W pracy, stosując koncepcję jednorodnej dawki równoważnej (ang. Equivalent Uniform Dose – EUD), oceniono wzajemny wpływ dawek deponowanych w poszczególnych targetach.
EN
Radiotherapy aims to deliver an appropriate dose of ionizing radiation to the target, minimizing the doses in critical organs. There are cases where several Planning Target Volume (PTV) are planned in the treatment plan for one patient that require different doses to be deposited. In such cases, one of the possible irradiation techniques is the so-called Simultaneous Integrated Boost (SIB) technique, in which all PTV are simultaneously irradiated with different doses. Due to the existing Beam Penumbra Effect, the application of a dose in one PTV affects the doses in the second PTV receiving a lower dose. In this paper, using the concept of the Equivalent Uniform Dose – EUD (EUD) the mutual influence of doses deposited in particular PTVs was assessed.
EN
Aim: To study the dosimetric advantages of the jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) for carcinoma of cervix patients. Materials and Methods: We retrospectively selected ten previously treated cervix patients in this study. All the ten patients underwent CT simulation along with immobilization and positional devices. Targets and organ at risks (OARs) were delineated slice by slice for all the patients. All the patients were planned for IMRT and VMAT with intend to deliver 50 Gy in 25 fractions. All the plans were planned with 6 MV photon beam using millennium-120 multi leaf collimator (MLC) using the TrueBeam linear accelerator. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) techniques by keeping the same constraints and priorities for the target volumes and critical structures for a particular patient. For standardization, all the plans were normalized to the target mean of the planning target volume. All the plans were accepted with the criteria of bladder mean dose < 40 Gy and rectum mean dose < 40 Gy without compromising the target volumes. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without jaw tracking for all the patients. Results: The conformity index average of all patients followed by standard deviation (̄x± σ̄x) for JT-IMRT, SJ-IMRT, JT-VMAT and SJ-VMAT were 1.176 ± 0.139, 1.175 ± 0.139, 1.193 ± 0.220 and 1.228 ± 0.192 and homogeneity index were 0.089 ± 0.022, 0.085 ± 0.024, 0.102 ± 0.016 and 0.101 ± 0.016. In low dose volume J,T-IMRT shows a 5.4% (p-value < 0.001) overall reduction in volume receiving at least 5 Gy (V5) compared to SJ-IMRT, whereas 1.2% reduction was observed in V5 volume in JT-VMAT compared to SJ-VMAT. JT-IMRT showed mean reduction in rectum and bladder of 1.34% (p-value < 0.001) and 1.46% (p-value < 0.001) compared to SJ-IMRT, while only 0.30% and 0.03% reduction were observed between JT-VMAT and SJ-VMAT. JT-IMRT plans also showed considerable dose reduction to inthe testine, right femoral head, left femoral head and cauda compared to the SJ-IMRT plans. Conclusion: Jaw tracking resulted in decreased dose to critical structures in IMRT and VMAT plans. But significant dose reductions were observed for critical structures in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structures were not significant compared to the JT-IMRT due to relatively lesser monitor units in the VMAT plans.
EN
The rapid development of new radiotherapy technologies, such as intensity modulated radiotherapy (IMRT) or tomotherapy, has resulted in the capacity to deliver a more homogenous dose in the target. However, the higher doses associated with these techniques are a reason for concern because they may increase the dose outside the target. In the present study, we compared 3DCRT, IMRT and tomotherapy to assess the doses to organs at risk (OARs) resulting from photon beam irradiation and scattered neutrons. Material and methods. The doses to OARs outside the target were measured in an anthropomorphic Alderson phantom using thermoluminescence detectors (TLD 100) 6Li (7.5%) and 7Li (92.5%). The neutron fluence rate [cm–2·s–1] at chosen points inside the phantom was measured with gold foils (0.5 cm diameter, mean surface density of 0.108 g/cm3). Results. The doses [Gy] delivered to the OARs for 3DCRT, IMRT and tomotherapy respectively, were as follows: thyroid gland (0.62 ± 0.001 vs. 2.88 ± 0.004 vs. 0.58 ± 0.003); lung (0.99 ± 0.003 vs. 4.78 ± 0.006 vs. 0.67 ± 0.003); bladder (80.61 ± 0.054 vs. 53.75 ± 0.070 vs. 34.71 ± 0.059); and testes (4.38 ± 0.017 vs. 6.48 ± 0.013 vs. 4.39 ± 0.020). The neutron dose from 20 MV X-ray beam accounted for 0.5% of the therapeutic dose prescribed in the PTV. The further from the field edge the higher the contribution of this secondary radiation dose (from 8% to ~45%). Conclusion. For tomotherapy, all OARs outside the therapeutic field are well-spared. In contrast, IMRT achieved better sparing than 3DCRT only in the bladder. The photoneutron dose from the use of high-energy X-ray beam constituted a notable portion (0.5%) of the therapeutic dose prescribed to the PTV.
6
Content available remote Web platform for research on IMRT algorithms
EN
The recent trends in software development force the transition from classical desktop-based programs into distributed systems offered over the Internet. The authors adapt this approach to the design of a collaborative radiotherapy planning system. The end users of the system are radiotherapy physiologists, medical staff, software developers and researchers developing new algorithms. A general concept and necessary components of such a system are presented.
PL
Aktualne trendy w rozwoju oprogramowania dyktują coraz powszechniejsze zastępowanie programów przeznaczonych do pracy na systemach stacjonarnych w systemy rozproszone dostępne za pośrednictwem sieci Internet. Autorzy niniejszego artykułu wykorzystują tę ideę do stworzenia systemu oprogramowania wspierającego współpracę fizyków radiologów, lekarzy, programistów oraz badaczy zajmujących się rozwojem algorytmów planowania radioterapii z modulowaną intensywnością dawki (IMRT). Artykuł przedstawia ogólna koncepcję takiego systemu oraz podstawowe komponenty z jakich powinien się składać.
PL
Radiochirurgia to sposób frakcjonowania dawki w radioterapii, polegający na podaniu kilku dużych dawek frakcyjnych w małej objętości. Jej realizację umożliwiają zaawansowane techniki dynamiczne. Jedną z nich jest technika, w której zastosowane są wiązki o zmiennym kształcie przy jednoczesnym obrocie głowicy akceleratora oraz zmiennej mocy dawki. Technikę tę określamy jako technikę obrotową z modulacją intensywności dawki VMAT (Volumetric Modulated Arc Therapy). Zmiany nowotworowe położone w strukturach anatomicznych zmieniających swoje położenie na skutek oddychania wymagają zastosowania techniki bramkowania oddechowego w celu zmniejszenia dawki w tkankach zdrowych otaczających guz nowotworowy. Bramkowanie oddechowe to technika, która polega na wyłączeniu ekspozycji promieniowania, kiedy guz nowotworowy znajduje się, wskutek oddychania pacjenta, poza wiązką promieniowania. Połączenie wyżej opisanych technik napromieniania z frakcjonowaniem radiochirurgicznym pozwala optymalnie wykorzystać oprogramowanie do obliczania rozkładu dawki, możliwości techniczne akceleratorów biomedycznych oraz radiobiologię w celu zwiększenia prawdopodobieństwa miejscowego wyleczenia. Jednak powiązanie technik napromieniania ze zmianą sposobu frakcjonowania dawki nie wystarczy, aby zastosować te metody w praktyce klinicznej. Czynnikiem niezbędnym jest obrazowe zweryfikowanie pozycji terapeutycznej pacjenta oraz dozymetryczne sprawdzenie poprawności obliczonego rozkładu dawki. Technika radiochirurgiczna z wykorzystaniem bramkowania oddechowego i VMAT omówiona zostanie na przykładzie pacjenta, który otrzymał dwa niezależne kursy radioterapii w odstępie ośmiu miesięcy. W celu zweryfikowania dawki całkowitej otrzymanej przez pacjenta zastosowano oprogramowanie do deformacji obrazu tomografii komputerowej, obrysów struktur oraz rozkładów dawki.
EN
Radiosurgery is the way of the dose fractionation were few high doses are delivered in small volume. It’s realization is possible due to dynamic techniques. One of such a technique is VMAT (Volumetric Modulated Arc Therapy) technique where the beams with variable shape are used together with accelerator gantry rotation and dose rate modulation. If cancerous lesions are located in anatomical structures, which one could change its position by patient breathing, then it is required to use respiratory gating system to reduce delivered dose to normal tissues surrounding the tumor. Respiratory gating system turns off the radiation when the tumor is outside the radiation beam due to patient breathing. The combination of respiratory gated VMAT technique with radiosurgery allows optimum use of the dose distribution calculating system, technical capabilities of biomedical accelerators and radiobiology in order to increase the probability of a local cure. However, the combination of irradiation techniques with the changes in the dose fractionation is not enough to apply these method in clinical practice. The image guided radiation therapy is the necessary factor to verify patient treatment position. Additionally dosimetry verification of the calculated dose distribution have to be done. The respiratory gated VMAT technique will be discussed on the example of a patient who received two independent radiotherapy courses (with eight months break between). To verify the total dose, received by the patient, the dedicated software was used to perform deformation of the computed tomography volume, structures outlines and dose distributions.
8
Content available remote Pułapki i nadzieje współczesnej radioterapii : spojrzenie klinicysty
PL
Radioterapia odgrywa ważną rolę w leczeniu nowotworów a nowoczesne technologie takie jak IMRT i VMAT są coraz bardziej dostępne w polskich Zakładach Radioterapii. Możliwości leczenia energią jonizującą gwałtownie wzrosły umożliwiając nowe sposoby leczenia pacjentów nawet z bardzo zaawansowanymi zmianami nowotworowymi. Rozwój inżynierii medycznej i technik komputerowych umożliwia dostarczenie bardzo konformalnego rozkładu dawki w obrębie obszarów tarczowych z jednoczesną ochroną zdrowych tkanek. Dzisiejsza radioterapia umożliwia leczenie pacjentów z dobra kontrolą miejscową, z niewielką ilością działań ubocznych a często w krótszym czasie niż to było przeszłości. Zaawansowane technologie wymagają ciągłego dokształcania wśród użytkowników aby zapewnić optymalne leczenie. W niniejszej pracy poglądowej przedstawiono kliniczne aspekty związane z zastosowaniem zaawansowanych technik radioterapii.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.