Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Himalaje Zachodnie
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This work aims at developing a hybrid ground motion prediction equation (GMPE) for spectral acceleration in Western Himalayas and North-Eastern India. The GMPE is derived using an efcient nonparametric modelling based on neural network algorithm. In this study, owing to sparsity in the recorded ground motions (498 recordings) for the region, the available information is combined with 13,294 records from the well-tested NGA-West 2 database. For the methodology adopted in the study, regional fags are assigned to the records. Thus, given a magnitude, distance, shear wave velocity, fault type and region, the model is able to predict the possible spectral acceleration. The developed GMPE is observed to be unbiased with respect to region. Further, the inter- and intra-event standard deviations are also in acceptable ranges. It is observed that developed GMPE for Western Himalayas and North-Eastern India is able to capture all the known ground motion characteristics. Additionally, the GMPE is compared with the existing GMPE for rock-type soil condition available for the Western Himalayas and North-Eastern India. Furthermore, applicability of the developed GMPE model in estimating hazard is analysed by obtaining the uniform hazard response spectra for Delhi and Guwahati.
EN
The observed and predicted rise in temperature will have deleterious impact on melting of snow and ice and form of precipitation which is already evident in Indian Himalayan Region. The temperature-dependent entities like discharge and sediment load will also vary with the observed and predicted rise posing environmental, social and economic threat in the region. There is little known about sediment load transport in relation to temperature and discharge in glacierized catchments in Himalaya mainly due to the scarcity of ground-based observation. The present study is an attempt to understand the suspended sediment load and transportation in relation to variation in discharge and temperature in the Shaune Garang catchment. The result shows strong dependence of sediment concentration primarily on discharge (R2 = 0.84) and then on temperature (R2 = 0.79). The catchments with similar geological and climate setting were observed to have comparatively close weathering rate. The sediment load was found to be higher in the catchments in eastern and central part of Indian Himalayan Region in comparison with western part due to dominance of Indian Summer Monsoon leading to high discharge. The annual physical weathering rate in Shaune Garang catchment was found to be 411 t km−2 year−1 which has increased from 327 t km−2 year−1 in around three decades due to rise in temperature causing increase in discharge and proportion of debris-covered glacierized area.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.