Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  High Performance Computing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Instability issues in the server room cooling system
EN
Since 2009, the National Center for Nuclear Research in Poland has been constructing its own High Performance Computing (HPC) Centre under the name Świerk Computing Centre (CIŚ). Now, it is ready reaching its target - 1 PFLOPS - in December 2015. However at the early operation stage, one of its major problems was the unstable work of the HPC cluster cooling system, resulting in increased maintenance costs. The main aim of this work is to thoroughly investigate the origin of the problem and to find the best solution for it based on results from a Computational Fluid Dynamics (CFD) analysis. The constructors suspected that the oscillations in the flow domain are caused by thermal flow stratification, but something else was proved. In this paper, a wide range of cases will be analyzed, covering different work regimes of the installation as well as various geometry modifications. Finally, certain improvement to the current design will be suggested by the CFD Analysis Group.
EN
The coupled finite element multiscale simulations (FE2) require costly numerical procedures in both macro and micro scales. Attempts to improve numerical efficiency are focused mainly on two areas of development, i.e. parallelization/distribution of numerical procedures and simplification of virtual material representation. One of the representatives of both mentioned areas is the idea of Statistically Similar Representative Volume Element (SSRVE). It aims at the reduction of the number of finite elements in micro scale as well as at parallelization of the calculations in micro scale which can be performed without barriers. The simplification of computational domain is realized by transformation of sophisticated images of material microstructure into artificially created simple objects being characterized by similar features as their original equivalents. In existing solutions for two-phase steels SSRVE is created on the basis of the analysis of shape coefficients of hard phase in real microstructure and searching for a representative simple structure with similar shape coefficients. Optimization techniques were used to solve this task. In the present paper local strains and stresses are added to the cost function in optimization. Various forms of the objective function composed of different elements were investigated and used in the optimization procedure for the creation of the final SSRVE. The results are compared as far as the efficiency of the procedure and uniqueness of the solution are considered. The best objective function composed of shape coefficients, as well as of strains and stresses, was proposed. Examples of SSRVEs determined for the investigated two-phase steel using that objective function are demonstrated in the paper. Each step of SSRVE creation is investigated from computational efficiency point of view. The proposition of implementation of the whole computational procedure on modern High Performance Computing (HPC) infrastructures is described. It includes software architecture of the solution as well as presentation of the middleware applied for data farming purposes.
PL
Symulacje wieloskalowe z wykorzystaniem sprzężonej metody elementów skończonych wymagają kosztownych numerycznie procedur zarówno w skali makro jak i mikro. Próby poprawy efektywności numerycznej skupione są przede wszystkim na dwóch obszarach rozwoju tj. zrównoleglenie/rozproszenie procedur numerycznych oraz uproszczenie wirtualnej reprezentacji materiału. Jedną z metod reprezentującą obydwa obszary jest podejście Statystycznie Podobnego Reprezentatywnego Elementu Objętościowego. Głównym celem tej metody jest redukcja ilości elementów dyskretyzujących przestrzeń obliczeniową, ale również możliwość zrównoleglenia obliczeń w skali mikro, które mogą być realizowane niezależnie od siebie. Uproszczenie domeny obliczeniowej poprzez tworzenie elementu SSRVE realizowane jest za pomocą metod optymalizacji umożliwiających tworzenie elementu najbardziej podobnego do rzeczywistego materiału na podstawie wybranych cech charakterystycznych. W rozwiązaniu dla stali dwufazowych cechy opisujące podobieństwo są tworzone na podstawie analizy współczynników kształtu ziaren martenzytu na zdjęciu rzeczywistej mikrostruktury. Natomiast podejście przedstawione w niniejszym artykule zostało rozbudowane dodatkowo o lokalne wartości naprężeń i odkształceń tak, aby w pełni odzwierciedlić podobieństwo zarówno wizualne jak i behawioralne. Różne formy funkcji celu zostały poddane analizie w procesie optymalizacji, a uzyskane wyniki zostały porównane pod względem jakości, a także efektywności i unikalności rozwiązania. Ostatecznie zaproponowana została najlepsza funkcja celu obejmująca współczynniki kształtu oraz wartości naprężeń i odkształceń. Przykłady SSRVE wyznaczone dla analizowanych stali dwufazowych zostały przedstawione w artykule. Natomiast każdy krok procedury tworzenia elementu SSRVE został poddany analizie wydajności obliczeniowe, na podstawie której zaproponowane zostało podejście wykorzystujące nowoczesne architektury sprzętowe wysokiej wydajności. Opis podejścia zawiera zarówno architekturę rozwiązania jak i prezentację oprogramowania warstwy pośredniczącej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.