Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Helmholtz resonator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Experimental and numerical investigations of pipeline with resonator
EN
This article presents the current state of the art. regarding the use resonators in straight pipes. There is considerable need to control and reduce pressure pulsation in pipelines supplied with pulsating flows. The use of a Helmholz resonator introduces an additional degree of freedom to the analysed dynamic system. Building on previous experimental investigations by the authors, which identified the nonlinear properties of straight pipes supplied with pulsating flows, this study describes an experimental test rig, measurement methods and mechanical analogies for one (1DOF) and two (2DOF) degrees of freedom. The results are presented in the form of a 3D map of amplitude-frequency characteristics, as a function of the resonator volume determined by piston height. The dynamic properties of the described system are presented as amplitude-phase characteristics, based on a comparison of the numerical and experimental results.
EN
The acoustic properties of the photoacoustic Helmholtz cell can be improved by conical modification of the duct ends. The cone profile of the duct ends was studied, and according to the previous work, not all modifications of the parameters provide an increase of the Q-factor of the resonator. The aim of this work is to investigate the influence of the conical modification of the duct using a step-approximated model.
EN
The effects of additional cavities and air-gaps in the acoustic response of a passenger vehicle are investigated. It is observed that the cabin cavity and the trunk cavity of the passenger vehicle are connected through an aperture in the rear seat. In the trunk cavity of the vehicle, there are two more air-gaps which are designed as countermeasures to trunk lid slam noise. It is established that acoustic modes and acoustic eigenfrequencies of the vehicle are altered through the trunk cavity and its air-gaps. To develop an analytical solution, the actual acoustic cavity is simplified into a rectangular shape. In the analytical solution, the coupling of trunk and cabin cavities is considered. It is shown that the computational analysis results match well with the results of the analytical solution proposed. Further, the resonator effect of air-gaps present in the trunk cavity is examined.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.