Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Hall current
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the effect of Hall current on an unsteady MHD transient three dimensional flow of an electrically conducting viscous incompressible fluid past an impulsively started infinite horizontal porous plate relative to a rotating system has been studied. It is assumed that the entire system rotates with a constant angular velocity about the normal to the plate and a uniform magnetic field is applied along the normal to the plate and directed into the fluid region. The magnetic Reynolds number is assumed to be so small that the induced magnetic field can be neglected. The expressions for the primary and secondary fields and shearing stress at the plate due to primary and secondary velocity fields are obtained in a non-dimensional form. The non-dimensional governing equations of the flow are solved by using the Galerkin FEM. The effects of the physical parameters, such as the Hartmann number (M), rotation parameter (Ω), porosity parameter (K) and Hall parameter (m) on primary and secondary velocities and shearing stresses τx and τy due to primary and secondary velocities are discussed through graphs and tables, and results are physically interpreted.
EN
The present investigation is concerned with one dimensional problem in a homogeneous, isotropic thermoelastic medium with double porosity structure in the presence of Hall currents subjected to thermomechanical sources. A state space approach has been applied to investigate the problem. As an application of the approach, normal force and thermal source have been taken to illustrate the utility of the approach. The expressions for the components of normal stress, equilibrated stress and the temperature change are obtained in the frequency domain and computed numerically. A numerical simulation is prepared for these quantities. The effect of the Hartmann number is depicted graphically on the resulting quantities for a specific model. Some particular cases of interest are also deduced from the present investigation.
EN
The present study deals with an analysis of the effects of radiation and porosity of the medium on unsteady natural convection flow of a viscous, incompressible and electrically conducting fluid past an impulsively started inclined plate under the influence of transversely applied uniform magnetic field and Hall current. The medium of the flow is taken as porous. The governing equations involved in the present analysis are solved by the Laplace-transform technique. The results obtained are discussed with the help of graphs drawn for different parameters like thermal Grashof number, mass Grashof Number, Prandtl number, Hall current, radiation, permeability, magnetic field parameter and Schmidt number. The numerical values obtained for skin-friction and Nusselt number have been tabulated. The objective of this study is to analyze radiation and the porosity of the medium in the MHD flow model. In the study we found that the velocity in the boundary layer increases with the values of radiation and porosity of the medium. It is also observed that radiation and porosity of the medium increases the skin-friction at the wall surface. The results of the study are found to be in agreement with the actual flow. The importance of the problem can be seen in cooling of electronic components of a nuclear reactor, bed thermal storage and heat sink in the turbine blades.
EN
An investigation of unsteady hydromagnetic free convection flow of a viscous, incompressible and electrically conducting fluid past an impulsively moving vertical plate with Newtonian surface heating embedded in a porous medium taking into account the effects of Hall current is carried out. The governing partial differential equations are first subjected to the Laplace transformation and then inverted numerically using INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by the Crank-Nicolson implicit finite difference scheme and a comparison has been provided between the two solutions. The numerical solutions for velocity and temperature are plotted graphically whereas the numerical results of skin friction and the Nusselt number are presented in tabular form for various parameters of interest. The present solution in special case is compared with a previously obtained solution and is found to be in excellent agreement.
EN
An investigation on an unsteady MHD natural convection flow with radiative heat transfer of a viscous, incompressible, electrically conducting and optically thick fluid past an impulsively moving vertical plate with ramped temperature in a porous medium in the presence of a Hall current and thermal diffusion is carried out. An exact solution of momentum and energy equations, under Boussinesq and Rosseland approximations, is obtained in a closed form by the Laplace transform technique for both ramped temperature and isothermal plates. Expressions for the skin friction and Nusselt number for both ramped temperature and isothermal plates are also derived. The numerical values of fluid velocity and fluid temperature are displayed graphically versus the boundary layer coordinate y for various values of pertinent flow parameters for both ramped temperature and isothermal plates. The numerical values of the skin friction due to primary and secondary flows are presented in tabular form for various values of pertinent flow parameters.
EN
The present investigation is made to study the effects of Hall current and thermal radiation on an unsteady free convection flow in an incompressible, viscous fluid through a porous medium in a rotating system with a transversely applied magnetic field. A perturbation technique is used to obtain the solutions of velocity and temperature fields by separating real and imaginary parts. Expressions for the skin friction and Nusselt number are also derived. It is observed that an increase in the Hall parameter (m) decreases the primary skin friction ( p), but increases the secondary skin friction ( s) while an increase in the radiation parameter decreases the Nusselt number (Nu).
EN
Effects of Hall current on an unsteady hydromagnetic Couette flow, induced due to an accelerated movement of the lower plate of the channel in a rotating system when the fluid flow is permeated by an inclined magnetic field is studied. An exact solution for the fluid velocity is obtained by the Laplace transform technique. The expression for the shear stress at the moving plate is also derived. An asymptotic behavior of the solution is analyzed for small and large values of time to gain some physical insight into the flow-pattern. It is found that Hall current, rotation and angle of inclination of the magnetic field tend to accelerate fluid flow in both the primary and secondary flow directions, whereas the magnetic field has a tendency to retard fluid flow in both the primary and secondary flow directions.
EN
The present analysis is made to investigate the effects of Hall current on the free convection flow of an incompressible, viscous fluid through a porous medium in a rotating system past an infinite vertical porous plate in the presence of a heat sink and a transversely applied uniform magnetic field. Solutions of velocity and temperature fields are obtained using the perturbation technique. Expressions for the skin motion and heat transfer are also derived. It is found that the increase in the magnetic parameter (M) decreases both the primary skin friction [...] and secondary skin friction [...] while an increase in the Hall parameter (m) decreases [...] but increases [...].
9
Content available remote Hall effects on MHD plasma Couette flow in a rotating environment
EN
The Magnetohydrodynamic (MHD) plasma Couette flow in a rotating frame of reference subject to the Hall current is studied. This problem is confined to a startup process, which deals with an impulsive start of the moving plate as well as an accelerated start of the moving plate. The solution is obtained by employing the Laplace inversion method. An asymptotic behavior of the solution is analysed for small as well as large time T to gain the physical insight into the flow pattern. As a consequence of the physical situation of interest the fully ionized neutral plasma interacts with the frictional layer when it starts in motion. The dimensionless velocity profiles are depicted graphically and the shear stresses are presented in tables.
EN
The Hall effects on unsteady MHD plasma behaviour of a rotating environment with oscillating pressure gradient in the presence of a transverse magnetic field have been studied. The solution in a dimensionless form contains five pertinent flow parameters, viz., 'alpha'm, E, P, 'omega' and m are, respectively, the magnetic interaction parameter, the Ekman number, the magnetic Prandtl number, the inertial frequency and the Hall current parameter. A new approach is based on the plasma behaviour in the electromagnetic field in a rotating environment which corresponds to inertial frequency over the oscillating pressure gradient. Eventually, the dominance of inertial frequency is experienced by the mechanism; the whole system stops due to the absence of inertial frequency of a rotating environment.
EN
The thermal instability of electrically conducting Rivlin-Ericksen elastico-viscous fluid in porous medium is considered to include the Hall current in the presence of a vertical magnetic field. For the stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves like a viscous (Newtonian) fluid. The Hall current and medium permeability are found to have destabilizing effect, whereas the magnetic field has a stabilizing effect on the thermal instability problem for stationary convection. A sufficient condition for the non-existence of overstability is obtained.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.