The article describes recent object detection methods with their main advantages and drawbacks and shows results of application of machine learning Haar Cascade algorithm for automobile detection. The article underlines problems related to the feature dataset generation and presents an overview of current dataset augmentation methods such as image mirroring, cropping, rotating, shearing and color modification. New methods fot image dataset augmentation, such as utilization of CAD models and Deep Learning solutions, are also proposed. In order to ensure low cost, real time detection machine learning based Haar Cascade detector has been proposed and tested on a custom dataset specifically created for dataset augmentation methods evalutation. Article provides all input parameters for detector training process, along with a brief description of object detection metrics. Finally the article presents results of the baseline detector and augumented calssificator created based on vertical image mirroring technique, for different dataset configurations. Algorithms performance for real time detection on high resolution images was also evaluated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.