Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  HU
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
X-ray computed tomography (CT) can reveal internal, three-dimensional details of objects in a non-destructive way and provide high-resolution, quantitative data in the form of CT numbers. The sensitivity of the CT number to changes in material density means that it may be used to identify lithology changes within cores of sedimentary rocks. The present pilot study confirms the use of Representative Elementary Volume (REV) to quantify inhomogeneity of CT densities of rock constituents of the Boda Claystone Formation. Thirty-two layers, 2 m core length, of this formation were studied. Based on the dominant rock-forming constituent, two rock types could be defined, i.e., clayey siltstone (20 layers) and fine siltstone (12 layers). Eleven of these layers (clayey siltstone and fine siltstone) showed sedimentary features such as, convolute laminations, desiccation cracks, cross-laminations and cracks. The application of the Autoregressive Integrated Moving Averages, Statistical Process Control (ARIMA SPC) method to define Representative Elementary Volume (REV) of CT densities (Hounsfield unit values) affirmed the following results: i) the highest REV values corresponded to the presence of sedimentary structures or high ratios of siltstone constituents (> 60%). ii) the REV average of the clayey siltstone was (5.86 cm3) and (6.54 cm3) of the fine siltstone. iii) normalised REV percentages of the clayey siltstone and fine siltstone, on the scale of the core volume studied were 19.88% and 22.84%; respectively. iv) whenever the corresponding layer did not reveal any sedimentary structure, the normalised REV values would be below 10%. The internal void space in layers with sedimentary features might explain the marked textural heterogeneity and elevated REV values. The drying process of the core sample might also have played a significant role in increasing erroneous pore proportions by volume reducation of clay minerals, particularly within sedimentary structures, where authigenic clay and carbonate cement were presumed to be dominant.
EN
Petrophysical parameters such as porosity and permeability and bulk density are input data for modeling hydrocarbon flow in reservoirs with the use of Eclipse® program (Schlumberger). The modeling is preceded by preliminary works comprising division of reservoir into hydraulic (flow) units, HU, and their characterization by geometrical and geological factors. Flow Zone Index, FZI, is a factor enabling easier description of movement of media in pore space only on the basis of combination of permeability and porosity. Then, HUs are determined on the basis of FZIs. The tested gas deposit belonged to a group of typical Miocene reservoirs from the Polish part of the Carpathian Foredeep. In this deposit, gas accumulations are related to deltaic sediments represented by sandstone and mudstone layers of various thickness, and heterolites with claystone, mudstone and sandstone intercalations. In the case of this deposit, the wealth of laboratory data made possible credible differentiation of FZI and HU. The tested methodology can also be applied to investigations of reservoirs bearing potable, mineral and geothermal water as well as those used for storage of sequestrated carbon dioxide.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.