Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  HTPB
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Conducting preliminary calculations of the ballistic effectiveness and smoke generation of new rocket propellant compositions is beneficial due to the high cost of tests. In this work, the combustion temperature (Tcomb.) and specific impulse (Isp) for rocket propellants were determined using the Air Force Specific Impulse Program. The effect of replacing the non-energetic binder hydroxyl terminated polybutadiene (HTPB) with binders containing explosophoric groups with glycidyl polyazide (GAP) or polynitratomethylmethyloxetane (polyNIMMO), and replacing ammonium perchlorate (AP) with ammonium dinitramide (ADN) are discussed. The highest Tcomb. and the highest Isp were obtained for a system containing 20% GAP, 60% ADN and 20% Al. Another important aspect of modern rocket propellants is smoke intensity, so smoke classifications were determined for the proposed compositions in accordance to the classification given in a report by the Advisory Group for Aerospace Research & Development (AGARD). The use of the new components – GAP, polyNIMMO and ADN – is beneficial because it enables a higher Isp and reduced smoke. The maximum Isp of these propellants is obtained for compositions containing higher amounts of binder, which facilitates the manufacturing process. The use of computer calculations in the first phase of research into new rocket propellants makes it possible to estimate the improvement in performance of the new propellant and to learn about the impact of composition changes on performance.
PL
Przeprowadzenie wstępnych obliczeń efektywności balistycznej oraz dymności nowych składów paliw rakietowych jest korzystne ze względu na wysokie koszty badań gotowych wyrobów. W pracy, przy wykorzystaniu programu Air Force Specific Impulse Program wyznaczono temperaturę palenia (Tcomb.) i impuls właściwy (Isp) układów trójskładnikowych zawierających jako utleniacz: chloran(VII) amonu (AP), sól amonową dinitroaminy (ADN), jak lepiszcze: polibutadien zakończony grupami hydroksylowymi (HTPB), poliazydek glicydylu (GAP), poliazotanometylometyloksyetan (NIMMO) oraz glin (Al). Omówiono wpływ zastąpienia nieenergetycznego lepiszcza HTPB, lepiszczami zawierającymi grupy eksplozoforowe oraz zastąpienie AP ADN. Opisano również wpływ Al na temperaturę i Isp omawianych paliw. Najwyższą Tcomb. oraz najwyższy Isp uzyskano dla układu GAP-ADN-Al. Kolejnym istotnym aspektem nowoczesnych paliw rakietowych jest intensywność dymienia. Określono klasy dymienia według klasyfikacji AGARD zaproponowanych składów. Zastosowanie nowych składników GAP, NIMMO i ADN jest korzystne, ponieważ: pozwala na uzyskanie większego Isp oraz zmniejszonego dymienia. Maksimum Isp tych paliw jest uzyskiwane dla składów zawierających większe ilości lepiszcza, co ułatwia proces wytwarzania. Wykorzystanie obliczeń komputerowych w pierwszym etapie badań nad nowymi paliwami rakietowymi pozwala na oszacowanie poprawy parametrów użytkowych nowego paliwa oraz poznanie wpływu zmian składu na parametry użytkowe.
PL
Stałe heterogeniczne paliwa rakietowe (SHPR) cieszące się dużą popularnością oraz szerokim zastosowaniem w przemyśle zbrojeniowym (silniki napędowe pocisków kierowanych oraz przeciwlotnicze rakiety dalekiego, bliskiego i średniego zasięgu) posiadają inertne lepiszcza, które znacząco wpływają na końcowe parametry użytkowe ładunków napędowych. W pracy przeprowadzono modyfikację popularnego lepiszcza HTPB polegającą na wprowadzeniu grup azydkowych do łańcucha polimeru podczas trzech różnych syntez. Otrzymano związki o różnej zawartości grup eksplozoforowych, które zostały poddane ocenie kompatybilności z podstawowymi składnikami SHPR: chloranem(VII) amonu i adypinianem dioktylu. Następnie przeprowadzono wstępne badania aplikacyjne otrzymanej pochodnej HTPB, wykazując potencjał otrzymanego energetycznego polimeru oraz możliwości jego zastosowania jako lepiszcza w stałych heterogenicznych paliwach rakietowych.
EN
Solid heterogeneous rocket propellants (SHRP), which are very popular and widely used in the armaments industry (guided missile propulsion engines and long-range, short-range and medium-range anti-aircraft rockets) have inert binders that significantly affect the final performance parameters of propulsion charges. In this study, the popular HTPB binder was modified by introducing azide groups into the polymer chain during three different syntheses. Compounds with different content of explosive groups were obtained and tested for compatibility with the essential SHRP components: ammonium chlorate(VII) and dioctyl adipate. Then, preliminary application tests of the obtained HTPB derivative were carried out, showing the potential of the obtained energetic polymer and the possibility of its use as a binder in solid heterogeneous rocket fuels.
EN
Solid heterogeneous rocket propellants (SHRPs) are increasingly used, mainly in the armaments industry. SHRPs are usually based on an inert binder - hydroxy-terminated polybutadiene (HTPB). The use of an inert polymer reduces the performance of the propellants, therefore this paper presents the preparation of propellants with different contents of the previously synthesized azide-HTPB and the results of research on their properties, such as density, calorific value, mechanical and thermal parameters and burning rate. An improvement in the tested parameters was noted in comparision to the properties of propellants without azide-HTPB. An increase in the calorific value of the propellants with the addition of azide-HTPB was noted, with a simultaneous reduction in the amount of oxidant in the SHRP composition. Azide-HTPB as a rocket propellant component has a significant impact on the mechanical properties of the propellant and also increases the propellant’s burning rate and the maximum pressure in the motor chamber.
EN
Polycaprolactone (PCL) is a widely used biodegradable and biocompatible polymer. Its use in rocket fuels results in a better oxygen balance and provides additional centres of adhesion of polyurethane binders compared to polyurethanes obtained using Hydroxyl Terminated PolyButadiene (HTPB). Additionally, PCL is used as a phlegmatizer in homogeneous solid rocket fuels. The other raw material used was HTPB used in the production of polyesters and polyurethanes, which gives these materials good mechanical properties. HTPB is the basis of solid rocket fuels used in space and military rocket propulsion. The aim of the work was to investigate the copolymerization reaction of HTPB with PCL. PCL-HTPB-PCL copolymer should combine and possess the desired properties of both polymers, i.e. excellent mechanical properties of polyurethanes, low glass transition temperature, and biocompatibility and biodegradability. Two HTPB species with different molecular weights were used in the study. Copolymerization with a ε-caprolactone ring opening (ROP) combines the constituent properties of the polymers. FTIR spectroscopic analysis was performed to confirm the PCL-HTPB-PCL chain structure. The molecular weight of the copolymer was shown to increase after 24 h of reaction, and the construction of the copolymer chain was confirmed, which indicated the correct reaction. Studies confirmed that as the molecular weight increases, the hydroxyl number decreases. The viscosity of the copolymers obtained decreases with increasing temperature. The copolymers obtained on the basis of low molecular weight HTPB had a liquid form. High molecular weight HTPB copolymers were obtained in the form of a wax.
PL
Polikaprolakton (PCL) jest powszechnie stosowanym biodegradowalnym i biokompatybilnym polimerem. Wykorzystanie go w paliwach rakietowych skutkuje lepszym bilansem tlenowym i zapewnia dodatkowe centra adhezji lepiszcz poliuretanowych w porównaniu z poliuretanami otrzymanymi z użyciem α,ω-dihydroksypolibutadienu (HTPB). Dodatkowo PCL stosowany jest jako flegmatyzator w homogenicznych stałych paliwach rakietowych. Drugim wykorzystanym surowcem był HTPB używany do otrzymywania poliestrów i poliuretanów, nadaje on tworzywom dobre właściwości mechaniczne. HTPB stanowi podstawę stałych paliw rakietowych, używanych w napędach rakiet kosmicznych i wojskowych. Celem pracy było zbadanie reakcji kopolimeryzacji HTPB z polikaprolaktonem. Kopolimer PCLHTPBPCL powinien łączyć i posiadać pożądane właściwości obydwu polimerów tj. doskonałe właściwości mechaniczne wytworzonych z nich poliuretanów, niską temperaturę zeszklenia oraz biokompatybilność i biodegradowalność. W badaniach wykorzystano dwa gatunki HTPB o różnej masie cząsteczkowej. Kopolimeryzacja z otwarciem pierścienia ε-kaprolaktonu (ROP) łączy właściwości składowe polimerów. Wykonano analizę FTIR, aby potwierdzić budowę łańcucha PCL-HTPB-PCL. Wykazano wzrost masy cząsteczkowej kopolimeru po 24 godzinach reakcji, oraz potwierdzono budowę łańcucha kopolimeru. Badania potwierdziły, że wraz ze wzrostem masy cząsteczkowej liczba hydroksylowa maleje. Lepkość otrzymanych kopolimerów maleje wraz ze wzrostem temperatury. Kopolimery otrzymane na bazie niskocząsteczkowego HTPB posiadały ciekłą postać. Kopolimery z wysokocząsteczkowym HTPB otrzymano w postaci wosku
5
Content available Synthesis of HTPB using a semi-batch method
EN
Hydroxyl-terminated polybutadiene is widely used in industry for both civil and military applications. In munitions, HTPB is mostly used as a binder for heterogenic rocket propellants and as a component of plastic bonded explosives, as well as a phlegmatizer in explosives sensitive to friction and impact. The wide range of HTPB applications results from the good mechanical properties of HTPB-based polyurethanes, in particular at temperatures down to –40 °C. A synthesis method for HTPB, different from the commonly used semi-batch and continuous methods, is presented. The effect of parameters including reaction temperature, 1,3-butadiene pressure and hydrogen peroxide concentration on the properties of the obtained polymer is determined. The synthesis conditions enabling new HTPB species to be obtained, which meet the requirements for binders used in solid rocket propellants, are specified.
PL
Polibutadien zakończony grupami hydroksylowymi (HTPB) ma szerokie zastosowanie w przemyśle światowym. Wykorzystywany jest zarówno w przemyśle cywilnym jak i wojskowym. HTPB w przemyśle zbrojeniowym wykorzystywany jest głównie jako lepiszcze heterogenicznych paliw rakietowych ale wykorzystuje się go również jako składnik plastycznych materiałów wybuchowych i flegmatyzator do wrażliwych na tarcie i uderzenie materiałów wybuchowych. Szerokie zastosowanie HTPB wynika z dobrych właściwości mechanicznych wytworzonych z niego poliuretanów. Szczególnie w niskich temperaturach dochodzących do –40 °C. Przedstawiono inną metodę syntezy HTPB niż powszechnie stosowane w przemyśle metody periodyczna i ciągła. Określono wpływ parametrów takich jak temperatura reakcji, ciśnienie 1,3-butadienu oraz stężenie nadtlenku wodoru na właściwości otrzymywanego polimeru. Wyznaczono parametry syntezy prowadzące do otrzymania nowego gatunku HTPB spełniającego wymagania stawiane lepiszczom stosowanym w stałych paliwach rakietowych.
EN
Hydroxyl-terminated polybutadiene (HTPB) is a co-monomer used in the production of polyurethanes. Its unique properties make it resistant to frost and give it excellent mechanical properties, especially at low temperatures. Polyurethanes obtained using this method are used in the production of propellants for space and military rocket propulsion systems, frost-resistant adhesives and insulation materials. Current research on the choice of binder indicates use of high-energy polymers or the modification of previously used polymers aimed at improving their properties. In modern rocket propulsion materials, the polymer binder may be replaced with a suitable high-energy compound, i.e. a polymer including energy groups, e.g. azide or nitro group. The article presents the results of research on methods of modifying HTPB properties to widen its applicability.
PL
α,ω-Dihydroksypolibutadien (HTPB) jest cennym komonomerem do otrzymywania poliuretanów. Dzięki swoim specyficznym właściwościom, nadaje tym tworzywom mrozoodporność i świetne właściwości mechaniczne, szczególnie w niskich temperaturach. Tak otrzymywane poliuretany znajdują zastosowanie w produkcji stałych paliw rakietowych używanych w napędach rakiet kosmicznych i wojskowych, a także są podstawą mrozoodpornych klejów i lepiszcz oraz materiałów izolacyjnych. Współczesne badania nad doborem lepiszcza wskazują na zastosowanie polimerów wysokoenergetycznych lub modyfikacji dotychczas stosowanych polimerów polepszających ich właściwości. W nowoczesnych rakietowych materiałach pędnych polimerowe lepiszcze, może zostać zastąpione odpowiednim wysokoenergetycznym związkiem chemicznym, czyli polimerem z wbudowanymi grupami energetycznymi, takimi jak azydkowa lub nitrowa. W prezentowanym artykule przedstawione zostaną wyniki badań nad takimi sposobami modyfikacji HTPB, które zapewnią jego rozszerzoną aplikację
7
EN
GAP and HTPB are polymers on which the copolymer obtained in our work is based. The following report indicates how to perform the polymerization reactions for these two polymers in order to obtain a copolymer that combines their individual positive physico-chemical properties. It demonstrates how the ratio of substrates and reaction conditions affect the polymer properties. It has been shown that increasing the amount of epichlorohydrin attached to HTPB significantly affects the copolymer viscosity. This has a later effect on polymer processing, as well as on the hydroxyl values being too low. This is important for the subsequent production of polyurethanes. Analysis of the results allows the reaction conditions to be designed so as to generate a polymer with the best properties. The reactions were carried out in two stages. The first stage was the connection of polyepichlorohydrin (PECH) to HTPB, and the second was azidation of the resultant PECH-HTPB-PECH copolymer. The influence of the amount of epichlorohydrin attached to HTPB on the copolymer properties (e.g. viscosity) was demonstrated. Analysis of the second stage, the preparation of the GAP-HTPB-GAP copolymer (by azidation of the PECH-HTPB-PECH copolymer), showed that the nitrogen content in the copolymer has a significant effect on the viscosity and heat of polymer combustion.
EN
The results of research on solid heterogeneous rocket propellant (SHRP) containing: ammonium chlorate(VII) (AP) as an oxidant, a binder based on liquid synthetic rubber, i.e. hydroxylterminated polybutadiene (HTPB), aluminium (Al) and technological additives in a laboratory rocket motor (LRM) are presented to determine the thermal sensitivity of the propellant.
PL
Przedstawiono wyniki z badań stałego heterogenicznego paliwa rakietowego (SHPR) zawierającego jako główne składniki: chloran(VII) amonu (AP) jako utleniacz, lepiszcze na bazie ciekłego syntetycznego kauczuku (HTPB), glin (Al) oraz dodatki technologiczne w laboratoryjnym silniku rakietowym (LSR) pozwalające na wyznaczenie wrażliwości termicznej paliwa.
EN
Hydroxyl terminated polybutadiene (HTPB) as a telechelic liquid polymer has been widely used in propellants and explosives and many modified-HTPBs have been reported in the literature. As a binder or additive in propellants and explosives, the chemical modification of HTPB for improving certain properties of propellants has been summarized in detail in this article. According to the application drawbacks of HTPB, modified-HTPB can be classified differently. Furthermore, there are polymers that have been modified on their energetic properties, such as GAP-PB-GAP, BAMO-PB-BAMO, AMMO-PB-AMMO, Nitro-HTPB, HTPB-DNB and NHTPB. Pre-polymers modified on their combustion properties include Butacene®, FPDS-g-HTPB, Fc-HTPB, BiFc-g-HTPB, HTPB→[Fe(CO)3]x, PPA-HTPB-PPA and PNBE-HTPB-PNBE. HTPBs are also modified in curing systems containing, for example ETPB, PTPB, PrTPB, AzTPB, and PUPB, and other modification results are reviewed. Additionally, this overview is expected to provide an outlook for further studies in these fields.
PL
α,ω-Dihydroksypolibutadien (HTPB) jest cennym komonomerem do otrzymywania poliuretanów. Dzięki swoich specyficznym właściwościom, nadaje tym tworzywom mrozoodporność i świetne właściwości mechaniczne, szczególnie w niskich temperaturach. Tak otrzymywane poliuretany znajdują zastosowanie w produkcji stałych paliw rakietowych używanych w napędach rakiet kosmicznych i wojskowych, a także są podstawą mrozoodpornych klejów i lepiszcz oraz materiałów izolacyjnych. Współczesne badania nad doborem lepiszcza wskazują na zastosowanie polimerów wysokoenergetycznych lub modyfikacji dotychczas stosowanych polimerów polepszających ich właściwości. W nowoczesnych rakietowych materiałach pędnych polimerowe lepiszcze, może zostać zastąpione odpowiednim wysokoenergetycznym związkiem chemicznym, czyli polimerem z wbudowanymi grupami energetycznymi, takimi jak azydkowa lub nitrowa. W prezentowanym artykule przedstawione zostaną wyniki badań nad takimi sposobami modyfikacji HTPB, które zapewnią jego rozszerzoną aplikację.
EN
HTPB is a valuable comonomer for the preparation of polyurethanes. Thanks to its specific properties, it gives these materials frost resistance and excellent mechanical properties, especially at low temperatures. The polyurethanes thus obtained are used in the production of propellants used in space and military rocket propulsion, and are the basis for frost-resistant adhesives and insulating materials. Research on the selection of binder indicates the use of high energy polymers or modifications of previously used polymers improving their properties. The results of research on ways of changing the properties of HTPB through its modification and thus an increase of application possibilities will be presented.
EN
This paper presents results from the application of [Cu(TNBI)(NH3)2(H2O)] (CuTNO) to heterogeneous solid rocket propellants based on HTPB/AP, replacing RDX. A series of different compositions of solid heterogeneous rocket propellants based on HTPB and ammonium perchlorate, containing CuTNO or RDX, were prepared and investigated. The ballistic parameters of the examined propellants were determined by combustion in a laboratory rocket motor (LRM). The ballistic properties were evaluated in the pressure range 4-10 MPa and it was found that the linear burning rate at 10 MPa increased by more than 20% for the CuTNO containing propellant, compared to the RDX-based composition. By linear regression of the r = f(p) curves obtained, the burning laws for the investigated propellants were determined. It was found that the CuTNO additive increases the pressure coefficient by over 46%, compared to unmodified propellant. The determination of the sensitivities to friction and impact, the calorific value, hardness and decomposition temperature of the propellants obtained were also investigated.
PL
W pracy przedstawiono wpływ kruszących materiałów wybuchowych: heksogenu (RDX), oktogenu (HMX), oraz dinitro diaminoetenu (FOX-7), na właściwości heterogenicznego stałego paliwa rakietowego (HSPR) na bazie HTPB, w którym chloran(VII) amonu (NA) został częściowo zastąpiony azotanem(V) sodu (AS). W wyniku wprowadzenia azotanu(V) sodu zawartość HCl w produktach spalania paliw zmniejszyła się. W programie ICT-Code wyznaczono teoretyczne wartości właściwości termochemicznych i termodynamicznych paliw, takie jak izochoryczne ciepło spalania (Q), impuls właściwy (Isp) i skład produktów spalania w komorze oraz dyszy silnika. Zbadano właściwości reologiczne (lepkość pozorną) zawiesin paliw podczas procesu ich utwardzania, wrażliwość utwardzonych paliw na bodźce mechaniczne (uderzenie, tarcie), temperaturę rozkładu, kaloryczność, twardość oraz właściwości balistyczne paliw zawierających materiały wybuchowe za pomocą laboratoryjnego silnika rakietowego (LSR).
EN
The paper describes an influence of high explosives: hexogene (RDX), octogene (HMX), and dinitro-diaminoethene (FOX-7) on the properties of heterogeneous solid rocket propellant (HSRP) prepared on the base of Hydroxy Terminated Polybutadiene (HTPB) in which ammonium perchlorate (AP) was partially replaced by sodium nitrate (SN). It reduced the content of HCl in combustion products. Theoretical values of thermochemical and thermodynamic properties such as isochoric combustion heat (Q), specific impulse (Isp) and contents of combustion products in motor combustion chamber and nozzle have been identified by using the ICT-Code program. The rheological properties (virtual viscosity) of the propellant slurry during curing process, the sensitivity to mechanical stimuli (impact, friction), decomposition temperature, calorific value and hardness of propellants containing explosive materials were tested by instruments and ballistic properties were investigated by laboratory rocket motor (LRM).
PL
W pracy przedstawiono wpływ takich dodatków jak: glin, magnez, pył aluminiowo-magnezowy (PAM) i boru na właściwości heterogenicznego stałego paliwa rakietowego (HSPR) na bazie HTPB, w którym chloran(VII) amonu został częściowo zastąpiony azotanem(V) sodu. Wprowadzając w skład paliw azotan(V) sodu zawartość chorowodoru (HCl) w produktach spalania zmniejszyła się. Za pomocą programu ICT-Code wyznaczono teoretyczne wartości właściwości termochemicznych i termodynamicznych takie jak izochoryczne ciepło spalania (Q), impuls specyficzny (Isp) i produkty spalania w komorze i dyszy silnika. W celu wyznaczenia właściwości balistycznych otrzymane paliwa spalono w laboratoryjnym silniku rakietowym (LSR). Zbadano właściwości reologiczne (lepkość pozorną) zawiesiny paliwa podczas procesu utwardzania, wrażliwość na bodźce mechaniczne (uderzenie, tarcie), temperaturę rozkładu, ciepło spalania i twardość.
EN
The paper presents influence of additives like aluminium, magnesium, AMD (aluminium-magnesium dust) and boron on selected properties of heterogeneous solid rocket propellants (HSRP) based on HTPB in which ammonium (VII) chlorate was partly replaced by sodium(V) nitrate. The presence of sodium(V) nitrate reduces the content of hydrogen chloride (HCl) in combustion products. Theoretical values of thermochemical and thermodynamical properties like isochoric heat of combustion (Q), specific impulse (Isp) and combustion products in motor chamber and nozzle were identified by ICT-Code program. A laboratory rocket motor (LRM) was used to examine ballistic properties for prepared samples of propellants. Their temperature of decomposition, heat of combustion and hardness were tested both with sensitivity to mechanical stimuli (impact, friction) and rheological properties at curing.
PL
W pracy przedstawiono wyniki badań wybranych właściwości stałego heterogenicznego paliwa rakietowego (SHPR) na bazie kauczuku HTPB zawierającego Butacen®. Oba powyższe składniki SHPR zostały wykonane w kraju. W ramach prowadzonych prac wykonano serię paliw o zmiennej zawartości Butacenu® jako modyfikatora szybkości spalania w składzie paliwa w zakresie 1-4% wagowych. Dla uzyskanych próbek paliw oznaczono takie parametry jak twardość, wrażliwość na bodźce mechaniczne oraz kaloryczność. Wykorzystując laboratoryjny silnik rakietowy (LSR) dokonano spalenia uzyskanych paliw i wyznaczenia liniowej szybkości spalania w zakresie ciśnień 3-11 MPa. Ponadto dokonano analizy termicznej wpływu Butacenu® na proces rozkładu SHPR.
EN
The paper presents the results of studies of the properties of heterogeneous solid rocket propellant (HSPR) based on HTPB rubber containing Butacene®. Both of these HSPR ingredients were made domestically. As part of the work, a series of propellants with a variable content of Butacene®, as a combustion rate modifier in the range of 1-4%, were prepared. For these propellant samples, parameters such as hardness, mechanical sensitivity and calorific values were determined. Using a laboratory rocket motor (LRM), the propellants were combusted and the linear combustion rate determined at a pressure range of 3-11 MPa. In addition, the effect of Butacene® on the HSPR decomposition process was investigated by thermal analysis.
PL
Dokonano przeglądu prac nad heterogenicznymi stałymi paliwami rakietowymi (HSPR) na bazie kauczuku HTPB (hydroxy-terminated polybutadiene). Opisano trendy badań ze szczególnym uwzględnieniem badań wpływu poszczególnych dodatków technologicznych do HSPR. Zwrócono uwagę na znaczny zakres prac nad nowymi modyfikatorami szybkości spalania HSPR. Przeanalizowano także metody wyznaczania parametrów balistycznych, badań starzeniowych w technice przyspieszonego starzenia w podwyższonej temperaturze oraz badań właściwości reologicznych w układzie HTPB-diizocyjanian.
EN
A review, with 34 refs., of additives to heterogeneous solid rocket propellants, methods for detn. of their viscosity, linear combustion rate, and ageing behaviour.
EN
This paper presents the results of investigations into the use of 56 nm nano iron(III) oxide as a combustion rate modifier in a solid heterogeneous rocket propellant (SHRP). A series of solid heterogeneous rocket propellants based on HTPB and ammonium perchlorate with different nano iron(III) oxide contents in the propellant composition were prepared and investigated. The ballistic parameters of the examined propellants were determined by combustion in a laboratory rocket motor (LRM). The ballistic properties were evaluated in the pressure range 5-10 MPa. It was found that the linear burning rate at 7 MPa was increased by 15% for 1% nano iron(III) oxide content in comparison to 0.2% content. Determination of the sensitivity to friction and impact, the calorific value, hardness and decomposition temperature of the derived propellants were also investigated.
EN
The aim of the work is the research on self-ignition phenomena in a hybrid rocket engine. The engine uses 98% hydrogen peroxide as oxidizer and HTPB (Hydroxyl-Terminated Poly-Butadiene) as fuel. The condition, that is essential to initiate self-ignition in this system, is the application of a catalytic reactor, which enables the decomposition process of liquid hydrogen peroxide into the mixture of steam and oxygen with the temperature 800-950 deg C. The research has been based on the use of different catalyst materials as well as various configurations of catalyst beds. During the research (hot tests) the following parameters are collected: pressure and temperature at the end of the catalyst bed and the thrust of the engine. The evaluation of the ignition delay (that is counted from the start of the HTP flow) is made on the basis of the chamber pressure as well as on the video recording of the fire test.
PL
Celem pracy jest badanie zjawiska samozapłonu stałego paliwa w rakietowym silniku hybrydowym. Silnik jest zasilanym 98% nadtlenkiem wodoru (utleniaczem) oraz HTPB (paliwem). Warunkiem, koniecznym do zainicjowania samozapłonu, jest w tym przypadku zastosowanie reaktora katalitycznego, który umożliwia rozkład ciekłego nadtlenku wodoru na mieszaninę pary wodnej i tlenu o temperaturze 800-950 °C. Badania zostały oparte o wykorzystanie różnych katalizatorów (materiałów nośnika i fazy aktywnej) oraz różnych konfiguracji reaktorów katalitycznych. Podczas badań – gorących testów – rejestrowane są: ciśnienie oraz temperatura na granicy komory katalitycznej i komory spalania, a także siła ciągu silnika rakietowego. Ocena czasu wystąpienia zapłonu (liczona od momentu uruchomienia przepływu HTP) jest dokonywana na podstawie zapisu przebiegu ciśnienia w komorze oraz rejestracji video.
18
Content available Otrzymywanie HTPB metodą półperiodyczną
PL
Polibutadien zakończony grupami hydroksylowymi (HTPB) ma szerokie zastosowanie w przemyśle światowym. Wykorzystywany jest zarówno w przemyśle cywilnym jak i wojskowym. HTPB w przemyśle zbrojeniowym wykorzystywany jest głównie jako lepiszcze heterogenicznych paliw rakietowych ale wykorzystuje się go również jako składnik plastycznych materiałów wybuchowych i flegmatyzator do wrażliwych na tarcie i uderzenie materiałów wybuchowych. Szerokie zastosowanie HTPB wynika z dobrych właściwości mechanicznych wytworzonych z niego poliuretanów. Szczególnie w niskich temperaturach dochodzących do -40 °C. Przedstawiono inną metodę syntezy HTPB niż powszechnie stosowane w przemyśle metody periodyczna i ciągła. Określony zostanie wpływ parametrów takich jak temperatura reakcji, ciśnienie 1,3-butadienu oraz stężenie nadtlenku wodoru na właściwości otrzymywanego polimeru. Wyznaczono parametry syntezy prowadzące do otrzymania nowego gatunku HTPB spełniającego wymagania stawiane lepiszczom stosowanym w stałych paliwach rakietowych.
EN
Hydroxyl terminated polybutadiene (HTPB) is widely used in the global industry. It is used both in civil industry and military. HTPB in the armaments industry is mainly used as a binder for composite rocket propellants but also used it as an ingredient in plastic bonded explosives and as an phlegmatizer in sensitive to friction and impact explosives. Extensive use of HTPB is a result of the good mechanical properties of polyurethanes made from it. Especially at low temperatures of up to -40 °C. Method of HTPB synthesis another than widely used in industry methods, periodic and continuous, has been presented. Influence of parameters such as reaction temperature, pressure of 1,3-butadiene and hydrogen peroxide concentration on the properties of the resulting polymer has been presented. Synthesis conditions conducive to obtaining new HTPB species, which meet the requirements for binders used in solid rocket propellants, has been specified.
EN
This paper presents results from research concerning the effect of nitrated hydroxyl-terminated polybutadiene (NHTPB), content up to 3%, on the physicochemical, physico-mechanical and ballistic properties of heterogeneous rocket propellants based on hydroxyl-terminated polybutadiene (HTPB), ammonium perchlorate (AP) and aluminium powder. The results of research on the rheological and thermal properties of the tested solid rocket propellants are also presented. These studies have shown that 2% rubber NHTPB, contained within a composite solid propellant, increases the energy and ballistic parameters of the propellant.
EN
Aluminized melt-cast TNT and PBX (cast/pressed) based compositions have been widely studied and used in different warheads for various applications,such as air blast, underwater blast, thermobaric effects, etc. Tungsten (W) based cast PBX formulations are the least reported in the literature. We have partially replaced RDX or HMX in the control PBX formulation with 15 to 25% W powder and investigated the effect of this on the ease of processing, density, sensitivity, mechanical properties and explosive performance. The viscosity was improved from 9 to 3 kPoise, and the density by about 12 to 25% on the addition of W powder to the PBX formulations. The sensitivity to impact for the RDX/Wand HMX/W based PBX formulations was improved by 12 to 37%. The reinforcing effect of the W powder caused an increase in hardness (Shore A) by 16 to 45%. A decreasing trend in the velocity of detonation (VOD) was observed because of the replacement of the nitramine content (RDX/HMX) with W powder. The approximate detonation pressure of RDX/W/HTPB (65/20/15), roughly calculated by the Kamlet-Jacobs method, is better than the other tungsten based formulations investigated.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.