Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  HSCCC
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Citrus reticulata cv. Chachiensis, a traditional Chinese herb, has extensive medicinal and edible effects. 3′,4′,5,6,7,8-Hexamethoxyflavone (HM) and 5,6,7,8,4′-pentamethoxyflavone (PM) are main bioactive compounds in Chachiensis, which have been reported to possess various biological properties. In this study, supercritical CO2 extraction (SCE) and high-speed countercurrent chromatography (HSCCC) were utilized to prepare HM and PM from Chachiensis. The contents of target compounds were determined by a high-performance liquid chromatography method with diode-array detection (HPLC-DAD), which was validated using the following parameters: linearity, sensitivity, repeatability, stability, precision and accuracy. The SCE conditions were optimized using response surface methodology with central composite design. Obtained optimum conditions were temperature of 37.9 °C, pressure of 26.3 MPa, and modifier volume of 81.0 mL. Under above conditions, the recoveries of target compounds were 92.52 ± 0.83 and 96.36 ± 0.43%, respectively. The most appropriate solvent system for HSCCC was selected as n-hexane/ethyl acetate/methanol/water (1:0.8:1:1.2, v/v). The HSCCC fractions were detected by HPLC-DAD, liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). The results indicated that this method was successfully applied to obtain HM and PM with high purities and high recoveries from Chachiensis.
EN
By application of preparative high-speed counter-current chromatography (HSCCC) to the crude quinolone alkaloids (1.1 g) from the fruit of Tetradium ruticarpum, 1-methyl-2((6Z,9Z)-pentadecadienyl)-4(1H)-quinolone (1, 8.4 mg), dihydroevocarpine (2, 27.0 mg), and 1-methyl-2-pentadecyl-4(1H)-quinolone (3, 18.8 mg) were isolated in one step with sufficient purity using the solvent system composed of hexane–ethyl acetate–methanol–water (Hex–EtOAc–MeOH–H2O, 5:2:5:3). Further purification of the subfraction was performed by amending the solvent composition and achieved another three quinolone alkaloids, i.e., 1-methyl-2-undecylquinolin-4(1H)-one (4, 13.7 mg), (Z)-1-methyl-2-(tridec-5-en-1-yl) quinolin-4(1H)-one (5, 14.0 mg) from subfraction FR3-A3-85 using Hex–EtOAc–MeOH–H2O (5:3.5:8.75:8.25), and 1-methyl-2-nonylquinolin-4(1H)-one (6, 15.1 mg) from subfraction FR3-A3-36 using Hex–EtOAc–MeOH–H2O (5:3.8:5:4.8). The relationship between the structure of the six alkaloids and their affinities for bovine serum albumin (BSA) was investigated using fluorescence titration analysis. The length and the presence of double bond of the side chain affected their binding process with BSA. The binding behavior might influence their other biological activities.
EN
A study on separation of betalain mixture obtained from red beet juice (Beta vulgaris L.) by analytical high-speed counter-current chromatography (HSCCC) was performed. The extract was obtained by thermal treatment of acidified red beet juice for 30 min in 85 °C. The pigment mixture consisted of betanin/isobetanin as well as their decarboxy- and dehydro-derivatives. The HSCCC process was accomplished in the ‘tail to head’ mode with two polar solvent systems containing salt: BuOH-EtOH-NaClsolution-H2OH3PO4 (1300:700-1000:1300:700:2.5-5.5 (system I), 1300:200-400:1300:700:2.5-4.5 (system II); v/v/v/v/v). The retention of the stationary phase was 73% (system I) and 79% (system II). The mobile phase was pumped at 2 ml/min flow rate. HPLC-DAD-ESI-MS analyses were performed in reversed phase mode for the obtained HSCCC fractions and crude extract. The solvent systems enabled separation of betanin and decarboxy-betanins (system I and II) as well as neobetanin (system II). Additionally, some pure fractions of 17-decarboxy-betanin and 2,17-bidecarboxy-betanin were obtained in system II.
EN
In this study, new two-phase solvent systems for counter-current chromatography (CCC) consisting of n-butanol and water as well as various amounts of acetic acid, acetonitrile, ethanol, acetone or ethyl acetate were tested. Additionally, tetra-n-butylammonium bromide (TBAB) was introduced into the system in the form of aqueous solutions or phosphate-citrate buffer (pH 6.7) in order to form ion-pairs with betalains. The selection of buffer pH was based on their ability to create ion pairs by tetraalkylammonium salts, with selected betalains under these conditions. In this study, it is shown that the settling time of two phases is longer with the increase of acetic acid/acetonitrile/ethanol/acetone/ethyl acetate. For selected solvent systems with high amounts of acetonitrile, ethanol and acetone two phases were not observed. The systems with acetone have the largest increase of settling time. Ethyl acetate systems were characterized by a slow settling time increase. In systems containing additionally 2% aqueous TBAB, smaller changes in settling time than in similar systems without TBAB were observed. Addition of TBAB in the buffer resulted in a prolongation of settling time. Solvent systems in which the separation between the aqueous and organic phases was visually best, were selected from among all the tested systems and the betalain partition coefficients were measured by LC-DAD-ESI-MS. The best results were observed for systems: n-butanol-water-acetic acid (2:2.5:0.75, v/v/v), n-butanol-water-acetic acid (2:2.5:1, v/v/v) and n-butanol-TBAB in water-acetonitrile (2:2.5:0.5, v/v/v).
EN
A high-speed counter-current chromatography (HSCCC) method was established for the isolation and purification of isochlorogenic acid A from Lonicera japonica Thunb. The two-phase solvent system was composed of n-hexane:ethyl acetate: isopropanol:water (2:3:2:5, v/v/v/v). From 150 mg of the ethyl acetate fraction of L. japonica Thunb, 19.65 mg of isochlorogenic acid A was obtained in a one-step HSCCC separation, with a purity of 99.1%, as determined by high-performance liquid chromatography (HPLC). The structure was further identified by ultraviolet (UV), mass spectrometry (MS) and nuclear magnetic resonance (NMR).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.