The article reviews traditional and modern methods for prediction of gas turbine operating characteristics and its potential failures. Moreover, a comparison of Machine Learning based prediction models, including Artificial Neural Networks (ANN), is presented. The research focuses on High Pressure Compressor (HPC) recoup pressure level of 4th generation LM2500 gas generator (LM2500+G4) coupled with a 2-stage High Speed Power Turbine Module. The researched parameter is adjustable and may be used to balance net axial loads exerted on thrust bearing to ensure stable gas turbine operation, but its direct measurement is technically difficult implicating the need to indirect measurement via set of other gas turbine sensors. Input data for the research have been obtained from BHGE manufactured and monitored gas turbines and consists of real-time data extracted from industrial installations. Machine learning models trained using the data show less than 1% Mean Absolute Percentage Error (MAPE) as obtained with the use of Random Forest and Gradient Boosting Regression models. Multilayer Perceptron Artificial Neural Networks (MLP ANN) models are reviewed, and their performance checks inferior to Random Forest algorithm-based model. The importance of hyperparameter tuning and feature engineering is discussed.
PL
W artykule przedstawiono przegląd klasycznych i aktualnych metod przewidywania parametrów operacyjnych oraz potencjalnych usterek turbin gazowych. Dodatkowo zaprezentowano porównanie wybranych modeli opartych o uczenie maszynowe, w tym modeli wykorzystujące sztuczne sieci neuronowe. Przeprowadzone badania dotyczyły analiz poziomu ciśnienia ze sprężarki turbiny gazowej LM2500 czwartej generacji (LM2500+G4) połączonej z dwustopniową turbiną roboczą. Badany parametr podlega sterowaniu i może posłużyć do wyrównania sił osiowych działających na łożysko główne wału wysokiego ciśnienia w celu zapewnienia stabilnej i niezawodnej pracy turbiny gazowej. Jednocześnie jego bezpośredni pomiar jest kosztowny stąd potrzeba dokonania pośredniego pomiaru z wykorzystaniem innych czujników zamontowanych na turbinie. Dane wejściowe do analiz otrzymano dzięki uprzejmości producenta turbin, firmy BHGE. Zawierają one parametry bezpośrednio pobrane z monitorowanych turbin gazowych. Modele uczenia maszynowego otrzymane w wyniku analizy charakteryzują się średnim błędem procentowym (MAPE) na poziomie poniżej 1%. Najmniejszym błędem charakteryzują się modele otrzymane przy zastosowaniu lasów losowych (Random Forest) oraz gradientowego wzmacniania regresji (Gradient Boosted Regression). Przetestowano także zastosowanie wielowarstwowych, w pełni połączonych sztucznych sieci neuronowych, których efektywność okazała się niższa od modelu opartego o algorytm lasów losowych. W podsumowaniu podkreślono wagę dostosowywania hiperparametrów i inżynierii cech.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.