Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  HOS
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents the classification of musical instruments using Mel Frequency Cepstral Coefficients (MFCC) and Higher Order Spectral features. MFCC, cepstral, temporal, spectral, and timbral features have been widely used in the task of musical instrument classification. As music sound signal is generated using non-linear dynamics, non-linearity and non-Gaussianity of the musical instruments are important features which have not been considered in the past. In this paper, hybridisation of MFCC and Higher Order Spectral (HOS) based features have been used in the task of musical instrument classification. HOS-based features have been used to provide instrument specific information such as non-Gaussianity and non-linearity of the musical instruments. The extracted features have been presented to Counter Propagation Neural Network (CPNN) to identify the instruments and their family. For experimentation, isolated sounds of 19 musical instruments have been used from McGill University Master Sample (MUMS) sound database. The proposed features show the significant improvement in the classification accuracy of the system.
EN
In this paper a smart automatic classification of PQ transients is performed attending to their amplitudes and frequencies, and the extreme of higher-order cumulants. Feature extraction stage is double folded. First, these statistical measurements reveal the hidden geometry for a constant amplitude or frequency, conforming the 2D clustering grace to the third and fourth-order features associated to each signal anomaly, coupled to the 50-Hz power line. Precisely the main contribution of the work is the novel finding that the maxima and the minima of the higher-order cumulants distribute according to curves families, each of which associated to the transient's frequency or amplitude. Given a statistical order, each datum in a curve corresponds to the initial amplitude (or constant frequency), and to a couple of extremes (min-max) associated to the statistical estimator. The random grouping along each curve reveals the a priori hidden geometry, linked to the subjacent electrical phenomenon. Secondly, the regular surface grid in the input space (amplitude-frequency) experiments a transformation to the output space which is developed by the higher-order statistics. Once the geometry in the feature space has been found, we show the computational intelligence modulus, based in Self-Organizing Maps, which performs satisfactory learning along each frequency and amplitude curve. Performance of a four-neuron network with different geometries is shown, confirming the curves' patterns.
PL
W artykule opisano automatyczną metodę klasyfikacji jakości energii w stanach przejściowych z uwzględnieniem amplitudy, częstotliwości i wartości ekstremalnych. W pierwszym etapie przeprowadzane są pomiary statystyczne dla stałej amplitudy i częstotliwości uwzględniające klastry 2D i właściwości trzeciego i czwartego rzędu towarzyszące anomaliom. Następnie uwzględniana jest geometria sieci. Po tym etapie włączany jest moduł sztucznej inteligencji bazujący na sieciach neuronowych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.