Electroencephalogram (EEG) signal serves is a powerful tool in epilepsy detection. This study decomposes intrinsic mode functions (IMFs) into amplitude envelope and frequency functions on a time-scale basis using the analytic function of Hilbert transform. IMFs results from the empirical mode decomposition of EEG signals. Features such as energy and entropy parameters were calculated from the amplitude contour of each IMF. Other features, such as interquartile range, mean absolute deviation and standard deviation are also computed for their instantaneous frequencies. Discriminative features were extracted using a large data-base to classify healthy and ictal EEG signals. Normal EEG segments were differentiated from the seizure attack in individual IMF features, multiple features with individual IMF, and individual features with multiple IMFs. Discriminating capability of three Cases was tested. (i) Artificial neural network and (ii) adaptive neuro-fuzzy inference system classification were used to identify EEG segments with seizure attacks. ANOVA was used to analyze statistical performance. Energy and entropy-based features of instantaneous amplitude and standard deviation of instantaneous frequency of IMF2 and IMF1 have 100% accuracy, sensitivity, and specificity. Good performance with a single feature that represents information of the whole data was obtained. The result involved less complicated computation than other time– frequency analysis techniques.
Recent studies have utilizes color, texture, and composition information of images to achieve affective image classification. However, the features related to spatial-frequency domain that were proven to be useful for traditional pattern recognition have not been tested in this field yet. Furthermore, the experiments conducted by previous studies are not internationally-comparable due to the experimental paradigm adopted. In addition, contributed by recent advances in methodology, that are, Hilbert-Huang Transform (HHT) (i.e. Empirical Mode Decomposition (EMD) and Hilbert Transform (HT)), the resolution of frequency analysis has been improved. Hence, the goal of this research is to achieve the affective image-classification task by adopting a standard experimental paradigm introduces by psychologists in order to produce international-comparable and reproducible results; and also to explore the affective hidden patterns of images in the spatial-frequency domain. To accomplish these goals, multiple human-subject experiments were conducted in laboratory. Extended Classifier Systems (XCSs) was used for model building because the XCS has been applied to a wide range of classification tasks and proved to be competitive in pattern recognition. To exploit the information in the spatial-frequency domain, the traditional EMD has been extended to a two-dimensional version. To summarize, the model built by using the XCS achieves Area Under Curve (AUC) = 0.91 and accuracy rate over 86%. The result of the XCS was compared with other traditional machine-learning algorithms (e.g., Radial-Basis Function Network (RBF Network)) that are normally used for classification tasks. Contributed by proper selection of features for model building, user-independent findings were obtained. For example, it is found that the horizontal visual stimulations contribute more to the emotion elicitation than the vertical visual stimulation. The effect of hue, saturation, and brightness; is also presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.