Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Gulf of Mexico
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Simulating hurricane-generated waves is a challenging task due to rapidly fluctuating wind speed and direction, simultaneous presence of swells propagating out of the previous location of the hurricane and following/opposing waves on either side of the hurricane track, and dissipation in wind speed radially from the center of the hurricane. Bulk wave parameters have been investigated using the source term packages ST3, ST4 and ST6 implemented in the WAVEWATCH-III model to determine the most appropriate formulation for simulating hurricane-generated waves in the Gulf of Mexico. Based on the comparisons between model results and in situ observations during the passage of Hurricane Ivan (2004), it is shown that ST3 is not as successful as other formulations for hurricane wave modeling. Calibrated ST6 variant, T12, has shown to be the best formulation for simulating bulk wave parameters at points within the range of hurricane wind forcing; however, for the area beyond, and also during fair weather conditions, calibrated ST4 formulation, T471-Ex4, is recommended. Although T471-EX4 and T12 packages outperformed other cases, they overestimated waves propagating in the oblique and opposing wind. Dependence of ST6 parameter a0 on wind and wave direction is examined to improve the model performance.
EN
This paper presents the first results of a new way of using MODIS (Moderate Resolution Imaging Spectroradiometer) sensor data to visualize phytopigment inconstancy in the near-surface layer of water basins. Other sensors of this class alike, the MODIS spectral resolution is too low to reproduce the minimums of reflectance Rrs caused by phytopigments in water. However, MODIS is remarkable for the presence of a channel at 469 nm combined with channels at 412, 443, 488, 531, 547, and 555 nm. This makes it possible to distinguish the spectral limits of preferential light absorption by chlorophyll a (412-469 nm) and by accessory pigments (469-555 nm). These capabilities were realized thanks to spectral pixel indexation (SPI) of MODIS images of the sea surface. The SPI boils down to the fact that a user determines the presence of pigment minima in spectra of every image pixel, finds the sum of the wavelengths of these minima as a WRM code and assigns it to the image pixel as one of its attributes. WRM code = 100 is assigned to pixels free of the minima. Such indexation makes it possible to examine the inconstancy of phytopigments on the background of aquatic environment variability. Application of SPI approach to MODIS images of the Gulf of Mexico and the Baltic Sea made it possible to reveal new patterns of phytopigment dynamics during HABs events.
3
Content available remote Simulating tropical storms in the Gulf of Mexico using analytical models
EN
Different analytical models have been evaluated for estimating wind speed of the tropical storm, where the storm-induced wind velocity is calculated as a function of distance from the center of the hurricane. For these models, different parameters such as maximum wind speed, a radius of the maximum wind, hurricane shape parameter, hurricane translation speed and the orientation of the trajectory, etc., affect the shape of a hurricane. Hurricanes Lili (2002), Ivan (2004), Katrina (2005), Gustav (2008) and Ike (2008) from the Gulf of Mexico were used for skill assessment. The maximum wind radius was calculated using significant wind radii (R34, R50 and R64) reported by the National Hurricane Center. Different formulas for calculating the radius of maximum wind speed were evaluated. The asymmetric wind field for each hurricane was generated using analytic methods and compared with in situ data from buoys in the Gulf of Mexico and the H*Wind data. Analytical models were able to predict high wind speed under tropical cyclone conditions with relatively high precision. Among the analytical models evaluated in this research, the model proposed by Holland et al. (2010) showed excellent results. Dynamical wind models such as NCEP/NARR provide wind speed with the coarse spatial resolution which is acceptable for far-field locations away from the hurricane eye. In contrast, analytical models were able to produce sufficiently reliable wind speed within a particular radius from the center of the hurricane. Therefore blending of dynamical and analytical models can be used to provide accurate wind data during hurricane passage in the Gulf of Mexico.
EN
UV filters are the main ingredients in many cosmetics and personal care products. A significant amount of lipophilic UV filters annually enters the surface water due to large numbers of swimmers and sunbathers. The nature of these compounds cause bioaccumulation in commercial fish, particularly in estuarine areas. Consequently, biomagnification in the food chain will occur. This study estimated the amount of four common UV filters (ethylhexyl methoxycinnamate, EHMC; octocrylene, OC; butyl methoxydibenzoylmethane, BM-DBM; and benzophenone-3, BP3), which may enter surface water in the Gulf of Mexico. Our data analysis was based on the available research data and EPA standards (age classification/human body parts). The results indicated that among the 14 counties in Texas coastal zones, Nueces, with 43 beaches, has a high potential of water contamination through UV filters; EHMC: 477 kg year−1; OC: 318 kg year−1; BM-DBM: 258 kg year−1; and BP by 159 kg year−1. Refugio County, with a minimum number of beaches, indicated the lowest potential of UV filter contamination. The sensitive estuarine areas of Galveston receive a significant amount of UV filters. This article suggests action for protecting Texas estuarine areas and controlling the number of tourists and ecotourism that occurs in sensitive areas of the Gulf of Mexico.
EN
In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiveroperating characteristic (ROC) curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.
EN
The pink shrimp, Farfantepenaeus duorarum, is one of the most important shrimp species commercially harvested along the Gulf and Atlantic coasts of the US. In this study we developed a mitochondrial marker suitable for population studies of the species. A 611-617 bp hypervariable portion of the AT-rich region of the mt genome was amplified and sequenced. The 617 bp long consensus sequence contained 15 polymorphic insertion/deletion sites and 165 polymorphic substitution sites. Kimura 2-parameter distances ranged from 0.00 to 0.06 with a mean of 0.02. Among the 104 sequences, 100 haplotypes were counted if all mutations were included. If transitions were omitted, 34 haplotypes were observed. The results indicate that the hypervariable portion of the AT-rich region may be an effective marker for revealing the genetic structure of the pink shrimp off the southeast US.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.