Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Ground Conductivity Meters
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Ruczaj district in Kraków is the potential building area of high flat blocks for inhabitants. This area is built of the gypsum basement covered by the soil and impermeable clay beds with several meters of thickness. The flat blocks must be set on the textured gypsum layer. In the result of the rainfall and static pressure of the blocks, the water with SO42− increases up to the groundwater level, become the great threat for the flat blocks. The water creates specific hydrogeological conditions occurring in the zone of the building’s foundations. To eliminate the mentioned threat, we should determine precisely the thickness of the soil and impermeable clay as well as the depth of the gypsum basement. Based on the electromagnetic parameters of the geological formations, the Ground Conductivity Meter and DC resistivity methods were used to solve the mentioned problems.
EN
This article presents the results obtained from geophysical measurements as a supplement to and refinement of geological information obtained from engineering geological studies for the newly constructed highways. The research was conducted using two geophysical methods: Ground Conductivity Meters (GCM) and Electrical Resistivity Tomography (ERT). The above measurements were made on three research fields located along the planned express road S-19 (Kraśnik-Janów Lubelski section). These areas were selected due to the large amount of available archival data and varied geological conditions. The publication focuses primarily on the presentation of the results obtained using the very fast and extremely efficient GCM method. By processing GCM data, using Laterally Constrained Inversion (LCI) and Spatially Constrained Inversion (SCI) algorithms, the values ofelectrical resistivity of the surveyed centers were derived. The results are presented in the form of cross-sections and maps of electrical resistivity from different depths, which were collated and compared with the results from another geophysical method, ERT. These examples show that the use of inversion has a significant impact on the refinement of geological boundaries between layers of different electrical resistivities. Thanks to the correlation of geophysical data with boreholes and engineering geological probes, detailed models of the geological structure of the analyzed areas were elaborated, which are necessary for the selection of appropriate solutions for the construction and modernization of road infrastructure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.