Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Gray Wolf optimization algorithm
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With the escalating demand for underground mining and infrastructure construction, the optimization of tunnel construction has emerged as a primary concern for researchers. The geological conditions encountered during the excavation of hard rock tunnels using tunnel boring machines (TBM) significantly impact construction efficiency and cost-effectiveness. The existing lithology testing methods need to be more efficient in aligning with TBM operational efficiency. In recent years, the rapid advancement of artificial intelligence has paved the way for its integration into numerous domains, including tunnel engineering. To address this issue, this study proposes three innovative hybrid RF-based intelligent models, namely PSO-RF, ALO-RF, and GWO-RF, for the precise prediction of lithology in hard rock tunnels using TBM working parameters. The TBM operating parameters of the Jilin Yinsong Water Supply Project serve as the basis for this investigation. Twelve distinct characteristic parameters relevant to the lithology of the tunnel working face were carefully selected as input parameters for lithology prediction. Comparative analysis of the three hybrid models reveals that GWO-RF demonstrates exceptional lithology prediction performance (ACC = 0.999924; PREA = 0.0.9999976; RECA = 0.999775; F1A = 0.999876; Kappa = 0.999911), whereas PSO-RF and ALO-RF exhibit slightly inferior performance. Nonetheless, all three hybrid models exhibit a significant improvement in prediction accuracy compared to the unoptimized RF model. The research findings presented herein facilitate the swift determination of TBM working surface lithology, enabling timely adjustment of TBM working parameters, reducing equipment wear and tear, and enhancing construction efficiency.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.