Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Gateaux and Frechet differentiability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Let X, Y be real Banach spaces. Let Z be a Banach space partially ordered by a pointed closed convex cone K. Let f(·) be a locally uniformly approximate convex function mapping an open subset ΩY ⊂ Y into Z. Let ΩX ⊂ X be an open subset. Let σ(·) be a differentiable mapping of ΩX into ΩY such that the differentials of σ/x are locally uniformly continuous function of x. Then f(σ(·)) mapping X into Z is also a locally uniformly approximate convex function. Therefore, in the case of Z = Rn the composed function f(σ(·)) is Frechet differentiable on a dense Gδ-set, provided X is an Asplund space, and Gateaux differentiable on a dense Gδ-set, provided X is separable. As a consequence, we obtain that in the case of Z = Rn a locally uniformly approximate convex function defined on a C1,uE -manifold is Frechet differentiable on a dense Gδ-set, provided E is an Asplund space, and Gateaux differentiable on a dense Gδ-set, provided E is separable.
2
Content available remote A note on differentiability of Lipschitz maps
EN
We show that every Lipschitz map defined on an open subset of the Banach space C(K), where K is a scattered compactum, with values in a Banach space with the Radon-Nikodym property, has a point of Frechet differentiability. This is a strengthening of the result of Lindenstrauss and Preiss who proved that for countable compacta. As a consequence of the above and a result of Arvanitakis we prove that Lipschitz functions on certain function spaces are Gateaux differentiable.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.