Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  GateCycle
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Gas turbine selection for hot windbox repowering on 200 MW fossil fuel power plant
EN
This paper focuses on and discusses the concept of hot windbox repowering in an existing steam cycle power plant. Using commercial software, for that process based on the fraction of oxygen in exhaust gases, nine different models of gas turbines were tested in power plant model with a fossil fuel boiler. Then thermodynamic analysis of the power plant model before and after hot windbox repowering was conducted. This work seeks to select the best fit gas turbine for hot windbox repowering for a 200 MW fossil fuel power plant and to gain a deeper understanding of the effect of hot windbox repowering. To this end nine models of gas turbines with different net electrical power (from 50 to 125 MW) were tested and General Electric production GE Energy Oil&Gas MS9001E SC (GTW 2009) 123 MW gas turbine was selected as the most suitable for the model of the power plant and, after repowering, the total power of the power plant rose to 398 MW. Calculations were performed in 2 stages: 1) calculation and comparison of the thermodynamic parameters as well as carbon dioxide emissions of power plant model before and after repowering with nine different gas turbines, 2) calculation of thermodynamic parameters of the combined cycle power plant model before and after repowering in values 100%, 90%, 80%, 70%, 60% of fossil fuel boiler heat loads.
2
Content available remote Mathematical model of Combined Heat and Power Plant using GateCycleTM software
EN
The this paper contains a description and analysis of a mathematical model of the combined cycle gas turbine used by Lublin–Wrotków Combined Heat and Power Plant. The model was generated with the GE Energy Gate Cycle TM software and was based on the parametric design of the real power plant. A brief description of the technology used in the power plant is included in this work. The model was validated by comparing the generated results with the parametric design. The paper finishes with an analysis of the work of the District Water Heater and summary of the most important findings.
EN
This paper concerns the model of the ANSALDO V94.2 gas turbine for variable operating conditions from CHP Lublin Wrotków. General Electric GateCycle™ software was used to build the model. The gas turbine modeling methods used in the software were described. To assess the model, computations were performed for 40% and 70% load for 0.9, 14 and 30 ºC ambient temperature and 100% load for -20, 0.9, 14, 15 and 30 ºC ambient temperature. The results were compared with available heat balances of the object. The paper also discusses the theory of gas turbines, considering the sensitivity of the thermodynamic cycle.
PL
W pracy został zaprezentowany model kondensacyjnego bloku energetycznego klasy 800 MW. Przedstawiono założenia do budowy modelu matematycznego układu cieplnego oraz omówiono poszczególne grupy modeli cząstkowych (pojedynczych maszyn i urządzeń, np. turbina, wymiennik ciepła, itp. wchodzących w skład całego układu) wraz z ich parametrami i charakterystykami przyjętymi do zamodelowania.
EN
The paper presents the model of 800 MW supercritical condensing power plant unit. The assumption for building a mathematical model of thermal system, and discusses the different groups of partial models (individual machines and equipment, such as turbine, heat exchanger, etc. which are part of the whole system), together with their parameters and characteristics adopted to model are presented. Model of thermal system was developed using the power plant design and simulation software (GateCycle™) allowing the creation of a comprehensive model of power plant cycle using ready-made elements that require prior calibration (equations are assigned to individual items). Target model of thermal system was built "step by step". The basic model was the simplest possible system, which was subsequently supplemented by the elements (modules) up to a model of the closest to these kind existing objects in the world. At each step the system configuration was determined and the modules have been selected from a database of available devices. Then, the inter-connection between the elements was defined and the balance streams were determined. The next step was to determine the technical data and limitations for each device and to define the calculation methods for selected modules.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.