Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  GLCM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study develops a non-invasive method to predict blood glucose through image processing. For investigation, several invasive images and glucose levels were taken. Types of samples based on age classification, 20-60 years. For accuracy and simple analysis, 37 images of participants as volunteers, samples were evaluated and investigated under the gray level co-occurrence matrix (GLCM). In this study, an artificial neural network (ANN) was used for all training and hand texture testing to detect glucose levels. The performance of this model is evaluated using Root Mean Square Error (RMSE) and correlation coefficient (r). Clarke Error Grid Analysis (EGA) variance was used in this investigation to determine the accuracy of the method. The results showed that the RMSE was close to the standard value, the regression coefficient was 0.95, and the Clarke EGA analysis: 81.08% was in the A .% zone. So that the blood glucose prediction model using the GLCM-ANN method is feasible to apply.
PL
Niniejsze badanie rozwija nieinwazyjną metodę przewidywania stężenia glukozy we krwi poprzez przetwarzanie obrazu. W celu zbadania wykonano kilka inwazyjnych obrazów i poziomów glukozy. Rodzaje próbek na podstawie klasyfikacji wiekowej, 20-60 lat. Dla dokładności i prostej analizy, 37 obrazów uczestników jako ochotników, próbki zostały ocenione i zbadane w ramach macierzy współwystępowania poziomu szarości (GLCM). W tym badaniu sztuczna sieć neuronowa (ANN) została wykorzystana do wszystkich testów treningu i tekstury dłoni w celu wykrycia poziomu glukozy. Wydajność tego modelu ocenia się za pomocą błędu średniokwadratowego (RMSE) i współczynnika korelacji (r). W tym badaniu zastosowano analizę wariancji siatki błędów Clarke'a (EGA) w celu określenia dokładności metody. Wyniki pokazały, że RMSE była zbliżona do wartości standardowej, współczynnik regresji wyniósł 0,95, a analiza Clarke EGA: 81,08% znajdowała się w strefie A.%. Aby model przewidywania stężenia glukozy we krwi przy użyciu metody GLCM-ANN był możliwy do zastosowania.
EN
The highly infectious and mutating COVID-19, known as the novel coronavirus, poses a substantial threat to both human health and the global economy. Detecting COVID-19 early presents a challenge due to its resemblance to pneumonia. However, distinguishing between the two is critical for saving lives. Chest X-rays, empowered by machine learning classifiers and ensembles, prove effective in identifying multiclass pneumonia in the lungs, leveraging textural characteristics such as GLCM and GLRLM. These textural features are instilled into the classifiers and ensembles within the domain of machine learning. This article explores the multiclass categorization of X-ray images across four categories: COVID-19-impacted, bacterial pneumonia-affected, viral pneumonia-affected, and normal lungs. The classification employs Random Forest, Support Vector Machine, K-Nearest Neighbor, LGBM, and XGBoost. Random Forest and LGBM achieve an impressive accuracy of 92.4% in identifying GLCM features. The network’s performance is evaluated based on accuracy, precision, sensitivity and F1-score.
EN
The field of biomedicine is still working on a solution to the challenge of diagnosing brain tumors, which is now one of the most significant challenges facing the profession. The possibility of an early diagnosis of brain cancer depends on the development of new technologies or instruments. Automated processes can be made possible thanks to the classification of different types of brain tumors by utilizing patented brain images. In addition, the proposed novel approach may be used to differentiate between different types of brain disorders and tumors, such as those that affect the brain. The input image must first undergo pre-processing before the tumor and other brain regions can be separated. Following this step, the images are separated into their respective colors and levels, and then the Gray Level Co-Occurrence and SURF extraction methods are used to determine which aspects of the photographs contain the most significant information. Through the use of genetic optimization, the recovered features are reduced in size. The cut-down features are utilized in conjunction with an advanced learning approach for the purposes of training and evaluating the tumor categorization. Alongside the conventional approach, the accuracy, inaccuracy, sensitivity, and specificity of the methodology under consideration are all assessed. The approach offers an accuracy rate greater than 90%, with an error rate of less than 2% for every kind of cancer. Last but not least, the specificity and sensitivity of each kind are higher than 90% and 50%, respectively. The usage of a genetic algorithm to support the approach is more efficient than using the other ways since the method that the genetic algorithm utilizes has greater accuracy as well as higher specificity.
EN
Objectives: The main intention of this paper is to propose a new Improved K-means clustering algorithm, by optimally tuning the centroids. Methods: This paper introduces a new melanoma detection model that includes three major phase’s viz. segmentation, feature extraction and detection. For segmentation, this paper introduces a new Improved K-means clustering algorithm, where the initial centroids are optimally tuned by a new algorithm termed Lion Algorithm with New Mating Process (LANM), which is an improved version of standard LA. Moreover, the optimal selection is based on the consideration of multi-objective including intensity diverse centroid, spatial map, and frequency of occurrence, respectively. The subsequent phase is feature extraction, where the proposed Local Vector Pattern (LVP) and Grey-Level Co-Occurrence Matrix (GLCM)-based features are extracted. Further, these extracted features are fed as input to Deep Convolution Neural Network (DCNN) for melanoma detection. Results: Finally, the performance of the proposed model is evaluated over other conventional models by determining both the positive as well as negative measures. From the analysis, it is observed that for the normal skin image, the accuracy of the presented work is 0.86379, which is 47.83% and 0.245% better than the traditional works like Conventional K-means and PA-MSA, respectively. Conclusions: From the overall analysis it can be observed that the proposed model is more robust in melanoma prediction, when compared over the state-of-art models.
EN
There are numerous conventional fields of natural gas in the Carpathian Foredeep, and there is also evidence to suggest that unconventional gas accumulations may occur in this region. The different seismic signatures of these geological forms, the small scale of amplitude variation, and the large amount of data make the process of geological interpretation extremely time consuming. Moreover, the dispersed nature of information in a large block of seismic data increasingly requires automatic, self-learning cognitive processes. Recent developments with Machine Learning have added new capabilities to seismic interpretation, especially to multi-attribute seismic analysis. Each case requires a proper selection of attributes. In this paper, the Grey Level Co-occurrence Matrix method is presented and its two texture attributes: Energy and Entropy. Haralick’s two texture parameters were applied to an advanced interpretation of the interval of Miocene deposits in order to discover the subtle geological features hidden between the seismic traces. As a result, a submarine-slope channel system was delineated leading to the discovery of unknown earlier relationships between gas boreholes and the geological environment. The Miocene deposits filling the Carpathian Foredeep, due to their lithological and facies diversity, provide excellent conditions for testing and implementing Machine Learning techniques. The presented texture attributes are the desired input components for self-learning systems for seismic facies classification.
6
Content available remote Robust image forgery detection using point feature analysis
EN
Day for day it becomes easier to temper digital images. Thus, people are in need of various forgery image detection. In this paper, we present forgery image detection techniques for two of the most common image tampering techniques; copy-move and splicing. We use match points technique after feature extraction process using SIFT and SURF. For splicing detection, we extracted the edges of the integral images of Y , Cb, and Cr image components. GLCM is applied for each edge integral image and the feature vector is formed. The feature vector is then fed to a SVM classifier. For the copy-move, the results show that SURF feature extraction can be more efficient than SIFT, where we achieved 80% accuracy of detecting tempered images. On the other hand, processing the image in YCbCr color model is found to give promising results in splicing image detection. We have achieved 99% true positive rate for detecting splicing images.
EN
This paper presents the comparison of efficacy of three selected methods of texture analysis: Grey Level Co-occurence Matrix (GLCM) based entropy, Laplace operations and granulometric analysis, in the context of the edge effect. This effect means identifying edges of objects in an image as places of high texture, regardless of the real nature of the texture of the objects. It can significantly decrease the efficacy of selected methods of texture analysis. The article provides a brief presentation of the principal cause of this effect and also, shortly, the basics of the tested methods of texture analysis. The experiments were carried out on the VHR satellite image Pleiades (2m GSD), on the selected samples (test areas) of four land use/cover classes having different texture. The separation of these test areas in different texture images was assessed using Jeffries-Matusita distance. The results prove the significance of impact of the edge effect on the selected methods of texture analysis (GLCM entropy and Laplace operations), but they also show that a granulometric analysis is generally insusceptible to this effect, and thereby it provides the best discrimination of land use/cover classes of different texture.
8
Content available remote Yarn-Dyed Fabric Defect Detection Based On Autocorrelation Function And GLCM
EN
In this study, a new detection algorithm for yarn-dyed fabric defect based on autocorrelation function and grey level co-occurrence matrix (GLCM) is put forward. First, autocorrelation function is used to determine the pattern period of yarn-dyed fabric and according to this, the size of detection window can be obtained. Second, GLCMs are calculated with the specified parameters to characterise the original image. Third, Euclidean distances of GLCMs between being detected images and template image, which is selected from the defect-free fabric, are computed and then the threshold value is given to realise the defect detection. Experimental results show that the algorithm proposed in this study can achieve accurate detection of common defects of yarn-dyed fabric, such as the wrong weft, weft crackiness, stretched warp, oil stain and holes.
EN
In this paper authors present a simple method for recognizing blurred regions in the image. Proposed algorithm is based on 81 simple features — moments of histogram of image subbands, that were obtained during image decomposition, and ratio derived from gray level co-occurrence matrix (GLCM) are used. The method is compared with a different method, that is based on approaches found in literature. To increase the efficiency of algorithms, authors combined three solutions (edge-detection, gray level co-occurrence matrix and fast image sharpness). The aim of the research was to verify whether it is possible to use simpler methods of feature extraction to achieve similar, or even better, results.
10
Content available remote Liver Tumour Classification Using Co-Occurrence Matrices on the Contourlet Domain
EN
Liver disease is one of the most common diseases around the world, seriously affecting the health of humans. Computed tomography image based Computer Aided Diagnosis (CAD) could be crucially important in supporting liver cancer diagnosis. An effective approach to realize a CAD system for this purpose is described in this work. The CAD system employs automatic tumour segmentation, texture feature extraction and characterization into malignant and benign tumours. A Region of Inter- est (ROI) cropped from the automatically segmented tumour by confidence connected region growing and alternative fuzzy c means clustering is decomposed using multiresolution and multidirectional con- tourlet transform to obtain contourlet coefficients. Co-occurrence matrices of the contourlet coefficients are determined, and six parameters of texture characteristics, which include Angular Second Moment, Contrast, Correlation, Inverse Difference Moment, Entropy and Variance, are extracted from them. The extracted feature sets are classified into benign and malignant by a Generalized Regression Neural Net- work (GRNN) classifier. The performance of this scheme is evaluated by various performance measures and by the use a of the Receiver Operating Characteristic (ROC) curve. The results are compared with those obtained by a similar system using Wavelet Coefficients co-occurrence Matrix (WCCM) and Gray Level co-occurrence Matrix (GLCM) texture features. The results indicate that the proposed scheme based on the CCCM texture is effective for classifying malignant and begin liver tumours in abdominal CT imaging.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.