Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  GFRP bars
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Crack propagation in concrete structures is a very complicated process. An experimental method to predict the stress distribution of a cracked GFRP reinforced concrete flexural beam is presented. The beam subjected to four-point bending is internally reinforced with unidirectional GFRP bars. The aim of this investigation is to study the flexural performance of reinforced concrete members strengthened using GFRP bars. For the flexural tests performed on reinforced concrete beams strengthened with GFRP bars, the ultimate load of the beams strengthened with GFRP was reasonably increased. The mode of failure for beams reinforced with GFRP sections is slightly different compared with the traditional beam. The GFRP reinforced concrete beams fail either by concrete crushing at the compression zone or rupture of the GFRP reinforcement.
EN
Advantages of the self-stressed concrete members with FRP reinforcement are described. Analytical model for the restrained expansion strains (self-stresses) estimation in the self-stressed concrete members reinforced with FRP bars is proposed. Established modified strains development model (MSDM) is based on deformation compatibility approach in combination with taking into account imposed internal force in reinforcement as an additional restriction for the expansion strains development. Comparison of experimentally established and predicted data that was obtained in accordance with the proposed model for the case of GFRP bars uniaxially symmetrically reinforced high expansion energy capacity concrete members is presented. Verification of the proposed MSDM has shown a good agreement between calculated and experimental values that indicates its validity for the design of the self-stressed concrete members with GFRP reinforcement.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.