Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  GFA
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Recent advancement in metal containing multicomponent chalcogenide glasses
EN
Amorphous semiconductors or chalcogenide glasses are the key materials in modern optoelectronics to make comfortable life of our society. Understanding of physical properties (like microstructure, thermal, optical, electrical) of these materials is important for their different uses. Predominant study of physical properties of the metal containing multicomponent chalcogenide glasses have attracted much attention, due to their interesting variable features and wide range of structural network modifications. Structural modifications in these materials are usually described with respect to the values of structural units (or average coordination number). In significance to this, the present work demonstrates the chronological development in the field of chalcogenide glasses along with scanning electron microscopy (SEM) morphologies. Optical, electrical and thermal correlative properties of recent developed Se93-xZn2Te5Inx (0 ≤ x ≤ 10) metallic multicomponent chalcogenide glasses are discussed. Variation in SEM morphology, refractive index (n), extinction coefficient (K), optical energy band gap (Eg), electrical conductivity (δav), crystallization activation energy (Ec) and glass forming ability (GFA) with structural units of Se-Zn-Te-In glasses have been demonstrated in this study. Subjected materials thermal, optical and electrical parameters have been achieved higher and lower in a respective manner at the threshold structural unit value (r)
2
Content available remote Effect of Cu addition on the GFA, structure and properties of Fe-Co-based alloy
EN
Purpose: The aim of the paper was investigation of the effect of Cu addition on GFA (Glass Forming Ability), structure, magnetic and mechanical properties of amorphous Fe-Co-B-Si-Nb alloy. Design/methodology/approach: The following experimental techniques were used: differential thermal analysis (DTA), transmission electron microscopy (TEM) and X-ray diffraction (XRD) method, measurements of magnetic properties (VSM method), Vickers microhardness (HV). Findings: It was shown that when Cu is added to the Fe-Co-based alloy, increase of the GFA and change of the magnetic properties was obtained. Research limitations/implications: The results can give more details to understand the relationship between structure, magnetic and mechanical properties. Thus can be useful for practical application of these alloys. Practical implications: The (Fe36Co36B19Si5Nb4)100-xCux (x=0 and 0.6) metallic glasses due to their excellent soft magnetic properties have shown great industrial value for commercial application. Many products consisting of these kinds of metallic glasses have been widely used, for example anti-theft labels, precision sensor material, and high efficient magnetic transformers in electronic industry. Originality/value: The applied investigation methods are suitable to determine the changes of GFA and structure combined with magnetic and mechanical properties of (Fe36Co36B19Si5Nb4)100-xCux (x=0 and 0.6) metallic glasses
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.