Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Fe(III)
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present work focuses on examining the batch removal of Fe (III) from water using powdered Peganum Harmala seeds, characterized as FT-IR. In this work, several parameters are measured, including contact time, pH, Fe (III) concentration, reaction temperature effect, and adsorbent dose effect. Fe (III) adsorption was assessed using a UV-vis spectrophotometer at a wavelength of 620 nm. The findings demonstrated a positive correlation between the dosage of adsorbent and Fe (III) ions removal, with an increase in the adsorbent dose corresponding to higher elimination of Fe (III) ions. Therefore, the Langmuir isotherm model yielded more accurate equilibrium data compared to the Frendulich model. The kinetic data were mostly analyzed using a pseudo-second-order model rather than a pseudo-first-order model. Thermodynamic parameters, including enthalpy (ΔH◦), entropy (ΔS◦), and free energy (ΔG◦), were calculated. The adsorption process was found to be exothermic. Overall, Peganum Harmala was a favorable adsorbent for removing Fe (III) from aqueous solutions.
EN
The adsorption mechanism of Al(III) and Fe(III) ions on bastnaesite surfaces was investigated by a combination of DFT calculation, XPS analysis, adsorption isotherm study and adsorption kinetic investigations. DFT calculation results indicated that ≡CeOH0 and ≡CO3H0 are primary functional groups on bastnaesite surfaces. XPS analysis reveals that Al(III) and Fe(III) ions adsorbed onto the bastnaesite surfaces through the interaction between aluminium/iron hydroxide species and oxygen atoms of surface ≡CeOH0 groups. No interaction between aluminium/iron hydroxide species and ≡CO3H0 groups was detected. Adsorption isotherm studies demonstrated that the adsorption data of Al(III) and Fe(III) ions is fitted relatively well by Freundlich equations, the adsorption kinetic characteristics fitted to pseudo-second order model. Freundlich constants suggested favorable process for Al(III) and Fe(III) ions adsorption, and each adsorbed metal hydroxide specie complex with at least two oxygen atoms of surface ≡CeOH0 groups.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.