Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  FLOC
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Ornstein-Uhlenbeck model is one of the most popular stochastic processes. It has found many interesting applications including physical phenomena. However, for many real data, the classical Ornstein-Uhlenbeck process cannot be applied. It is related to the fact that for many phenomena the vectors of observations exhibit the so-called heavy-tailed behaviour. In such cases, the modifications of the classical models need to be used. In this paper, we analyze the Ornstein-Uhlenbeck process based on stable distribution. This distribution is one of the most classical members of the heavy-tailed class of distributions. In the literature, one can find various applications of stable processes. However, the heavy-tailed property implies that the classical methods of estimation and statistical investigation cannot be applied. In this paper, we propose a new method of estimation of the stable Ornstein-Uhlenbeck process. This technique is based on the alternative measure of dependence, called fractional lower order covariance, which replaces the classical covariance for infinite-variance distribution. The proposed research is a continuation of the authors' previous studies, where the measure called covariation was proposed as the base for the estimation technique. We introduce the stable Ornstein-Uhlenbeck process and remind its main properties. In the main part, we define the new estymator of the parameters for discrete representation of the Ornstein-Uhlenbeck process. Its effectiveness is checked by Monte Carlo simulations.
PL
Proces Ornsteina-Uhlenbecka jest jednym z najbardziej popularnych procesów stochastycznych. Znalazł on wiele ciekawych praktycznych zastosowań. Należy jednak zwrócić uwagę, że klasyczny proces Ornsteina-Uhlenbecka nie może być zastosowany dla wielu danych rzeczywistych, ponieważ często pochodzą one z rozkładów ciężko- ogonwych, dla których nie istnieje drugi moment. W takich przypadkach niezbędna jest modyfikacja klasycznego modelu z wykorzystaniem rozkładu stabilnego. Z powodu zastosowania rozkładu stabilnego niezbędne jest użycie innej metody estymacji niż bazującej na autokowariancji. Zaproponowana została nowa metoda bazująca na ułamkowych momentach. Praca jest kontynuacją wcześniej otrzymanych rezultatów dla innej alternatywnej miary zależności, kowariacji. W pracy przypomniana została definicja stabilnego procesu Ornsteina-Uhlenbecka wraz z propozycją nowych estymatorów dla parametrów tego procesu.W celu sprawdzenia ich właściwości wykonane zostały symulacje Monte Carlo.
2
Content available remote A random walk version of Robbins' problem : small horizon
EN
In Robbins' problem of minimizing the expected rank, a finite sequence of n independent, identically distributed random variables are observed sequentially and the objective is to stop at such a time that the expected rank of the selected variable (among the sequence of all n variables) is as small as possible. In this paper we consider an analogous problem in which the observed random variables are the steps of a symmetric random walk. Assuming continuously distributed step sizes, we describe the optimal stopping rules for the cases n = 2 and n = 3 in two versions of the problem: a „full information" version in which the actual steps of the random walk are disclosed to the decision maker; and a „partial information" version in which only the relative ranks of the positions taken by the random walk are observed. When n = 3, the optimal rule and expected rank depend on the distribution of the step sizes. We give sharp bounds for the optimal expected rank in the partial information version, and fairly sharp bounds in the full information version.
PL
W problemie Robbinsa celem jest zatrzymanie sekwencyjnych obserwacji skończonego ciągu niezależnych zmiennych losowych o tym samym rozkładzie tak, aby zminimalizować oczekiwaną rangę zatrzymanej zmiennej. Niniejsza praca poświęcona jest analogonowi problemu Robbinsa, w którym obserwowane zmienne losowe są wartościami symetrycznego błądzenia losowego. Zakładamy, że długości kroków są symetrycznymi zmiennymi losowymi o rozkładzie typu ciągłego. Opisujemy optymalne reguły zatrzymania dla przypadków n = 2 i n = 3 w dwóch wersjach problemu: wersja z pełną informacją, w której rzeczywiste długości kroków losowych są jawne i znane podejmującemu decyzje statystykowi, oraz wersja z częściową informacją, w której obserwowane są tylko względne ciągi pozycji zajmowanych przez ciągły, symetryczny, spacer losowy. Dla n = 3 optymalna strategia i oczekiwana ranga zależą od rozkładu długości kroków. Otrzymano ostre oszacowania dla wartości oczekiwanej otrzymanej rangi dla wersji problemu z częściową informacją oraz lepsze oszacowania dla problemu z pełną informacją.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.