Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  FEM model parameters
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Analysis of a riveted lap joint, the part of M-28 Skytruck fuselage, is presented. The aim of the paper is a proper choice of finite element mesh parameters (shape and density) around the rivet hole as well as a study of the influence of different sheets thickness on secondary bending. Riveting still remains the most popular method of joining metal and composite parts of the aircraft structure. During the operation (service) the severe stress concentrations and the effects such as fretting and secondary bending occur, thus reducing fatigue life. The specimen consists of two thin sheets (0.6 and 1.2 mm thick) stiffened with a 3 mm thick frame. The parts are connected by 14 rivets (3.5 mm diameter) and 8 rivets (3 mm diameter). Overall specimen dimensions are following: length 682 mm, width 136 mm, rivets pitch 17 mm. The riveted joint is subjected to a tensile load. The analysis of large parts of structures like fuselages, wings or multi-row riveted specimens can be performed using global shell models. The correct stress state in global modelling can be obtained by taking into consideration the hole in the sheet, the rivet axis (as a rigid or beam element) and contact elements between the rivet and the hole as well as between the sheets. Deformation of the joint and stress state are calculated. Large difference between sheets thickness causes non-physical deformation of the rivet cross sections. Proper deformations of the joint are obtained by increasing stiffness of those sections in a thinner sheet. Results are compared with an experimental investigation and applied to estimations of specimen fatigue life.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.