Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Earth sciences
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
PL
Artykuł przedstawia stworzenie portalu internetowego zapewniającego dostęp do polskich danych z Globalnego Systemu Nawigacji Satelitarnej (GNSS). Opracowane rozwiązanie jest jednym z elementów Centrum Infrastruktury Badawczej, zbudowanego w ramach polskiej odpowiedzi na program European Plate Observing System. W ramach projektu EPOS-PL utworzono Repozytorium Danych GNSS oraz Centrum Analiz Danych GNSS. Dostęp do danych i wyników ich przetwarzania zapewnia dedykowany geoportal. Prace obejmowały trzy etapy cyklu życia rozwoju systemu: projektowanie, implementację i testowanie. Portal ma za zadanie wspierać pracę zarządców infrastruktury GNSS, a przede wszystkim zaspokajać potrzeby środowiska naukowego zajmującego się badaniami stałej Ziemi.
EN
The paper presents the development of a web portal providing access to Polish Global Navigation Satellite Systems (GNSS) data. Developed solution is one of the Center of Research Infrastructure, built within the Polish response to the European Plate Observing System program. Within the EPOS-PL project, the GNSS Data Repository and GNSS Data Analysis Centre were created. Access to data and results of their processing is provided by a dedicated geoportal. The work included the following stages of the system development life cycle: design, implementation and testing. The portal is designed to support the work of GNSS infrastructu1re managers and, above all, to meet the needs of the scientific community involved in solid Earth research.
EN
The article describes the number and composition of scientific institutions dealing with geology in interwar Poland (1918-1939), including researchers, lecturers, laboratory technicians and technical service staff. Cooperation of public scientific institutions with private companies and broadly understood business is also discussed.
EN
A Research Object (RO) is defined as a semantically rich aggregation of resources that bundles together essential information relating to experiments and investigations. This information is not limited merely to the data used and the methods employed to produce and analyze such data, but it may also include the people involved in the investigation as well as other important metadata that describe the characteristics, inter-dependencies, context and dynamics of the aggregated resources. As such, a research object can encapsulate scientific knowledge and provide a mechanism for sharing and discovering assets of reusable research and scientific knowledge within and across relevant communities, and in a way that supports reliability and reproducibility of investigation results. While there are no pre-defined constraints related to the type of resources a research object can contain, the following usually apply in the context of scientific research: data used and results produced; methods employed to produce and analyze data; scientific workflows implementing such methods; provenance and settings; people involved in the investigation; annotations about these resources, which are essential to the understanding and interpretation of the scientific outcomes captured by a research object. The example research object contains a workflow, input data and results, along with a paper that presents the results and links to the investigators responsible. Annotations on each of the resources (and on the research object itself) provide additional information and characterize, e.g. the provenance of the results. Therefore, exploitation of the RO model should be considered as a way to provide additional reliability and reproducibility of the research. The concept of the RO was introduced to the environment created in the EVER-EST project in the form of Virtual Research Environment (VRE). a group of Earth Scientists, who are observing, analyzing and modeling processes that take place on land and see, was examined against their needs and expectations about the possible improvements in their scientific work. The results show that scientist expectations are focused on knowledge sharing and reuse, and new forms of scholarly communications beyond pdf articles as supporting tools of knowledge cross-fertilization between their members. The Research Object concept seems a natural answer for these needs. However, the model, in order to be sufficient and usable, must become a part of the working environment and needs to be integrated with the actual tools. Therefore, great efforts have been undertaken to create a generic, technical solution – VRE , which implements the expected functionalities. In this article we present a concept of the VRE as a tool that takes advantage of the Research Object model in order to integrate and simplify the information exchange, as well as persist, share and discover assets of the reusable research. Moreover, we are presenting example scenarios of the VRE usage in the four different Earth Science domains.
5
Content available Graph representation of geological stratum
EN
Geology, geophysics and environmental protection sciences provide large amounts of data. These data can be stored in various structures. Most of them are stored in files. It is possible to store these data in databases. One example of databases for earth sciences is a Geokarpat database (Kotlarczyk et al. 1997). This database was developed over many years (Piórkowski & Gajda 2009). Other geological databases are, for example, database MIDAS (MIDAS 2015) and central database of the geological data (CBDG 2015). Solutions listed above are based on the relational data model. This model is not perfect for data analysis, as there are a lot of complicated relationships between the entities (Dominguez-Sal et al. 2010). A typical use of SQL in this case requires the creation of multiple joins and a large amount of calculations. Graph data model is gaining popularity because it allows representation similar to the natural network model of relationships between data (Horzyk 2013). Applications of this model within the earth sciences are extensive, including solutions for GIS systems. One of example graph application is the creation of a virtual generator of the city using database Neo4j (Płuciennik & Płuciennik-Psota 2014). Graph structure reproduces biological structure of memory well (Horzyk 2013). Based on this advantage, there are new opportunities to store and analyze geological data. The use of graphs to record those data enables data analyses in similar manner like in associative neural networks (Horzyk 2013). Geological stratum often has a complex structure, for example: around area of tectonic faults (often multiple faults in history), intrusive rocks in stratum. Possibilities of using graph databases for storing geological data were checked. This study focuses on proposing a graph representation of geological stratum. The proposed graph structure was implemented in the graph database. Presentation of the history of geological stratum in relational databases is difficult. Studies show an example of stratum graph model, which enables data mining of stratum history in easy method, because graph database systems are designed to make search queries to find similarity in data. Additionally, the results of this study demonstrated useful query. Moreover, software and possible methods of construction of graph models were studied. As shown by the results, an analysis of complex models of geological stratum can be less complicated. Research shows that finding dependences in the graph representation of the geological layers can be beneficial in geological analyses.
PL
Pierwsze szkoły kształcące dla potrzeb górnictwa i nauk o Ziemi zaczęły powstawać na terenie Europy w XVIII wieku. Za najstarszą wyższą szkołę uznawana jest Akademia Górnicza we Freibergu, a następnie Akademia Górnicza i Leśna w Bańskiej Szczawnicy, Instytut Górniczy w Sankt-Petersburgu, Ecoles de Mines w Paryżu, Wyższa Szkoła Górnicza w Clausthal oraz Najwyższa Szkoła Górnicza w Kielcach. Zachowane dokumenty wskazują jednak, że nauczanie w Bańskiej Szczawnicy rozpoczęto co najmniej kilkanaście lat wcześniej. Na terenie Cesarstwa Austro–Węgierskiego za przełomowy dla edukacji górniczej należy uznać rok 1735, kiedy zapoczątkowano szkolenie ekspertów górniczych w wielu ośrodkach. Zasadniczym przełomem w tym zakresie był dekret cesarzowej Marii Teresy, w następstwie którego rok później utworzono Wyższą Szkołę Górniczą w Bańskiej Szczawnicy, przekształconą w 1770 r. w Cesarsko-Królewską Akademię Górniczą. Innym niezwykle ważnym europejskim ośrodkiem edukacji górniczej była Szkoła Górnicza w Petersburgu powołana w listopadzie 1773 r. przez carycę Katarzynę II. Od początku działalności szkoła ta była również ośrodkiem badań naukowych z zakresu górnictwa i geologii. Wielu polskich absolwentów – geologów wielce zasłużyło się później w rozwój nauki oddając swoje usługi zarówno na rzecz państwa rosyjskiego jak i Polski. Jeden z absolwentów Instytutu Górniczego w Petersburgu, Stanisław Kontkiewicz rozpoczął intensywne zabiegi mające na celu otwarcie szkoły górniczej w Królestwie Polskim na terenie Zagłębia Dąbrowskiego. Ostatecznie zabiegi grupy inicjatywnej powiodły się i w lutym 1889 nastąpiło oficjalne otwarcie Szkoły Górniczej „Sztygarka” w Dąbrowie Górniczej. Szkoła ta funkcjonuje do dnia dzisiejszego. Niewiele osób jednak wie, że na terenie ówczesnych Prus, a obecnie na terytorium naszego kraju — w Wałbrzychu (Waldenburg) — działała szkoła o podobnym profilu. Na podstawie wniosku Naczelnego Urzędu Górniczego w dniu 1 lipca 1838 r. utworzono Dolnośląską Szkołę Górniczą w Wałbrzychu oraz jej filię w Tarnowskich Górach. Działalność szkoły przerwał wybuch II Wojny Światowej.
EN
The first schools for miners, dealing with education of miners and earth scientist, began to appear in Europe in the 18th century. This was due to the growing demand for professionals dealing with acquisition of various types of mineral resources. In general, the oldest institution of higher education is recognized in Freiberg Mining Academy, founded in 1765, and then the Academy of Mining and Forestry in Banská Štiavnica – 1770 (in Slovak, Schemnitz – German, Szelmeczbánya – in Hungarian), and Institute of Mining in St. Petersburg – 1773. The studies of preserved documents indicate, however, that teaching in Banská Štiavnica started at least a dozen years earlier. The breakthrough for mining education in Austro-Hungarian Empire took place in 1735. The next stage of this development was the transformation of the school in Banská Štiavnica in 1770 into the Imperial-Royal Academy of Mining. The other very important centre of mining and geological education was organized in St. Petersburg. The first mention of the creation of the mining school in Russia is attributed to the reformist Tsar Peter I and the scientist Michael Lomonosow in the early 18th century. These ideas have been realized by the Empress Catherine II, who signed the relevant edict in November 1773, establishing St. Petersburg School of Mining (Gornoje Ucziliszcze) for the engineering personnel. Many graduates of this institution were Polish, later distinguished professionals miners and geologists, who later gave great merits to the Russian and Polish states. Stanisław Kontkiewicz, the geologist graduated from the St. Petersburg Institute of Mining was one of the initiators of the Mining School “Sztygarka” in Dąbrowa Górnicza. It was founded in 1889 and still operates. Only a few people know that then in Prussia (now on the territory of Poland), in Wałbrzych (Waldenburg) acted a school with a similar profile. July 1st 1838 is recognized as a day of the creation of the Lower Silesian School of Mines in Waldenburg. Since 1860, the School accepted also miners from ore and lignite mining in Glogau (Głogów) and Hirschberg (Jelenia Góra) and later also from lignite mining district in Grünberg (Zielona Góra).
7
Content available remote Tools to store information about the environment
EN
Earth Science provide large amounts of data. The available information can be stored and then analysed in different systems. For disciplines such as: geology, geophysics and environmental protection are created database. One of the first databases that contain information about the environment was a database for the Polish Carpathian mountains called GeoKarpaty (Kotlarczyk et al. 1997). This database has been developed over the years (Piórkowski 2009). The environment is understood as the sum of natural elements. Elements of the environment are, among others: the surface of the Earth, minerals, water (Ustawa z dnia 27 kwietnia 2001 r. ...). The need to protect these elements due to the need to conserve nature in the same state. For this purpose, are constructed themed data-base. They inform about the state of the environment, the risks affecting the surface of the earth. At the request of the Ministry of the Environment was established portal containing a record of such databases (Ekoportal 2015). There are a number of databases that can be classified into several groups. An important group of geological database. These include: data bank of groundwater classified mineral “MINERAL” (MINERALNE, 2015), the database MIDAS (MIDAS 2015), the central database of the geological data (CBDG 2015). Another group of databases is about the natural environment. One of them is a central register of forms of nature protection t hat contains records of the forms of nature protection (CRFOP 2015). Equally important are the records on the processing and storage of waste. The group includes eg.: a record of applications and decisions in the field of international shipments of waste (RZiDZMPO 2015), database about asbestosis (Baza Azbestowa 2015). This work focuses on the analysis of environmental databases. The study analysed opportunities offer such systems. The result of the study is to find the ability to access these databases such as for example: WMS, WFS. The next result is to compare the ability to access stored data. The final stage was the verification of environmental databases for environmental analysis. The issue of access to information from such systems plays a crucial role for further analysis, and it is not a trivial task.
PL
W materiałach I Kongresu Nauki Polskiej (Referat Sekcji Nauk o Ziemi, 1951) przedmiot badań nauk o Ziemi został sprecyzowany następująco: "Nauki o Ziemi badają środowisko geograficzne i poszczególne jego elementy oraz odkrywają prawa przyrody kształtujące to środowisko. Dostarczają one wiadomości o warunkach naturalnych i środkach produkcji oraz o możliwościach ich opanowania, użytkowania i przeobrażania dla dobra społeczeństwa". W systemie nauk o Ziemi główne miejsce przypada geografii. Geografia I połowy XX w. podlegała powolnym przemianom, zachowując długo dwa podstawowe kierunki - fizyczny i ekonomiczny (dawniej antropogeograficzny). Wobec istnienia kilku kierunków badawczych w dawnej geografii fizycznej i usamodzielnienia się tych kierunków w odrębne dziedziny geografia fizyczna stała się już dziś zbiorem nauk fizykogeograficznych. Tak powstały dziedziny, a obecnie już samodzielne nauki: geomorfologia, klimatologia, hydrologia, biogeografia, geografia gleb, kompleksowa geografia fizyczna (dziś zwana geoekologią). Podobnie w geografii ekonomicznej, stanowiącej dziś raczej zespół nauk ekonomicznogeograficznych, powstały nowe dziedziny tej geografii, a to: ludności, rolnictwa, transportu, przemysłu, turyzmu. Odrębną dziedziną stała się już wcześniej geografia regionalna; takimi są też dydaktyka geografii, geografia historyczna i historia geografii. Odrębnie rozwija się geologia, która w II połowie XX w. stanowiła już zespół nauk geologicznych, a w niej: geologia podstawowa - historyczna, dynamiczna i regionalna; mineralogia i petrografia, geochemia, hydrogeologia, geologia inżynierska o wyraźnie utylitarnym charakterze, coraz bardziej związana z geofizyką. Geofizyka pojawiła się w końcu XIX w. Dopiero jednak utworzenie w 1919 r. Międzynarodowej Unii Geodezji i Geofizyki dało możliwość rozwinięcia w jej ramach unii specjalistycznych. Geofizyka, jako początkowo stosowany dział fizyki, miała swe źródło w naukach fizycznych i częściowo geografii fizycznej, a także w geologii. Jako przykład można podać meteorologię - wespół z szeroko pojętą klimatologią. Takim przykładem jest też hydrologia (początkowo jako hydrografia). Inaczej rozwijała się nauka o morzu - oceanografia/oceanologia. Pozostałe nauki o Ziemi: geodezja, kartografia, a szczególnie gospodarka wodna, mają charakter bardziej utylitarny i są potraktowane pobieżniej, choć ich rola wyraźnie wzrasta. W jakim kierunku pójdzie rozwój nauk o Ziemi? O tym dyskutowano 9-10 XI 2004 r. na konferencji Wydziału VII PAN (Nauk o Ziemi i Nauk Górniczych) w związku z 25-leciem powstania Wydzialu. Sprawozdanie z konferencji, pod redakcją prof. Bogdana Ney'a, ukazało się drukiem w 2007 r. nakładem Wydzialu VII PAN oraz w "Przeglądzie Geofizycznym" (2009, nr 1-2).
EN
In the materials from the I Congress of Polish Science the subject of the research in Earth sciences was made precise as follows: "Earth sciences study the geographical environment and its individual elements; they also discover the laws of nature which form this environment. They supply information on natural conditions and means of production and on the possibilities of their mastering, utilizing, and transforming for society's welfare". In the system of Earth sciences geography holds the main place. In the first half of the 20th century, geography was slowly changing, with two basic directions: physical and economic. Since the main branches of physical geography gradually became independent sciences, physical geography itself soon evolved into a complex of physicogeographical sciences. In this way, disciplines - nowadays independent sciences - such as geomorphology, climatology, hydrology, biogeography, soil geography, geoecology, had been formed. Analogously, new branches of economic geography - nowadays independent economicogeographic sciences - such as geography of population, of agriculture, transport, industry, tourism had been created. Regional geography became a separate discipline even earlier, as did educational geography, historical geography, and history of geography. Geology has developed separately; in the second half of the 20th century it was already a complex of geological sciences, including: basic geology (historical, dynamical and regional), mineralogy and petrography, hydrogeology, engineering geology (of a utilitarian character and closer related to geophysics). Geophysics appeared at the end of the 19th century. But only the founding in 1919 of the International Union of Geodesy and Geophysics made it possible to develop this science within specialist unions. Geophysics, being originally an applied branch of physics, had its origin not only in physical sciences, but also in physical geography and in geology. An example of this is meteorology, together with climatology in the wide sense of this term. Another example is provided by hydrology (originally hydrography). The science of the sea, oceanography/oceanology, had a different development. The remaining earth sciences - geodesy, cartography, and in particular water management - are of more utilitarian character and are discussed less thoroughly, although their role is clearly increasing. What will be the direction of the development of Earth sciences in the future? This was the topic of the conference of the 7th Department (Earth and Mining Sciences) of the Polish Academy of Sciences, which took place on November 9-10, 2004 on the occasion of the 25th anniversary of the founding of the Department. The Conference Proceedings, edited by Prof. Bogdan Ney, were published in 2007, by the 7th Department of the Polish Academy of Sciences, and in "Geophysics Review" (2009, no. 1-2).
9
Content available remote Informacja przestrzenna w naukach o Ziemi
EN
In official classification of sciences in Poland, covering 17 fields of science and 80 scientific disciplines, Earth sciences . as a field of science . comprise four disciplines: geophysics, geography, geology and oceanography. Geodesy and cartography as a discipline belongs in this classification to the field of technical sciences, but in fact its important part is related to Earth sciences. Other disciplines like architecture, urban studies, building, mining, engineering geology, environmental engineering and transportation are also partly related to these sciences. In the structure of the Polish Academy of Sciences, comprising seven departments, geodesy and cartography belongs to the Department of Earth and Mining Sciences, but other, numerous scientific disciplines are also related to spatial information systems (GIS). This is a bilateral relation: these disciplines use geoinformation systems in their studies and at the same time contribute to their creative development. Geoinformation integrates spatial studies. Main problems and applications of geoinformatics can be characterized from a discipline point of view as follows: Geophysics . characteristics and location of physical features of rock formations of the Earth, especially important for studies of global, regional and local dynamics; examination of causal-consecutive relations between centers of seismic phenomena in rock mass and their effects in top layers of the Earth.s crust / Earth surface; documentation of seismic and microseismic hazards, Geology . information systems concerning geological structure of top layer of the Earth.s crust; inventory and monitoring of underground waters and deposits of geological raw materials; monitoring of hazards induced by geology, especially those caused by mass surface movements, Geography . analyses of complex natural, demographic, social and economic processes appearing on Earth surface, covering large areas and mapped in small scales; spatial studies having diagnostic and forecasting character, indispensable for conducting proper policy of spatial management at various levels: continental, euroregional, country, regional and local level, Oceanography . information systems related to studies of physics, chemistry, biology and dynamics of seas and oceans; investigations of sea-land interactions, important from research and practical point of view (e.g. threats and safety of coastal zones and water reservoirs); studies of phenomena and dynamics of changes in polar regions, Geodesy . creating . jointly with geography . spatial information systems and generally reference information, necessary for modern geoinformation; studies of Earth dynamics as a globe, studies of vertical and horizontal movements of the Earth.s crust at local and regional scale; creating and maintaining local and regional geographic information systems, which fulfill research and practical functions, Mining . geoinformation systems are applied in deep mining, open-mining and drilling mining; they are developed scientifically for their specific needs and conditions, mainly for deposit management (active cooperation with deposit, exploratory and engineering geology) and for keeping safety in mines, Civil and water engineering uses mainly GIS for spatial planning, spatial management and water management; these sectors participate in the studies of geographical space and in developing thematic geographic information systems, Ecology, protection of environment and environmental engineering . these spheres of public activity, being at the same time important elements of natural sciences and technical sciences, actively participate in scientific development of geoinformation, mainly through their contribution to creating thematic information systems and through usage of these systems in scientific spatial studies and in monitoring of environment, especially natural one and its components.
PL
Praca zawiera przegląd publikacji dotyczących nauk o Ziemi od XIX wieku. Omówiony został rozwój oceanografii w XIX wieku, oparty na obserwacjach zjawisk fizycznych, chemicznych i dynamicznych. Twórcami oceanologii na przełomie XIX i XX wieku byli: Sandstrom, Helland-Hansen, Margules, Ekman, Defant i inni. Przedstawiono w zarysie ogólne kierunki rozwoju oceanologii i wkład poszczególnych naukowców w jej rozwój oraz miejsce w geofizyce. Następnie zarysowano zapoczątkowanie współpracy międzynarodowej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.